Strukturbildung

Der Programmbereich “Strukturbildung” untersucht, wie sich Moleküle, Polymere und kolloidale Partikel zu Materialien verbinden. Er untersucht die grundlegenden Mechanismen der Strukturbildung und wendet sie an, um neue Materialien aus flüssigen Vorstufen herzustellen.

Wir untersuchen dazu, wie die Eigenschaften von Komposit- und Hybridmaterialien von ihrer Mikrostruktur abhängen und wie man sie verändern kann. Dazu variieren wir systematisch Größe, Geometrie, chemische Zusammensetzung und Anordnung der Materialbestandteile. Wir beobachten, wie Mikrostruktur und innere Grenzflächen entstehen und Materialeigenschaften bestimmen. Diese Methode wenden wir zum Beispiel auf transparent leitfähige Schichten aus metallischen Nanopartikeln für die Elektronik an, stellen so Komposite leitfähiger Polymere mit optisch aktiven Partikeln für Sensoren her und gestalten Suprapartikel aus optisch aktiven Nanopartikeln. Wir suchen Partikel, aus denen sich zukünftige “aktive Nanokomposite” herstellen lassen, die mit Elektronik verbunden ihre Eigenschaften bei Bedarf verändern können.

Ihr Ansprechpartner

Kraus
Leiter Strukturbildung
Abteilung: Strukturbildung
stv. Leiter InnovationsZentrum INM
Telefon: +49 (0)681-9300-389
Sekretärin
Abteilung: PB-Sekretariat
Telefon: +49 (0)681-9300-274

PROJEKTE

    NanoSpekt: Transparente leitfähige Materialien basierend auf Nanopartikeln

    Flexible und druckbare Elektronik erfordert neue Materialien. In diesem Projekt beschäftigen wir uns mit optisch transparenten Materialien für die Elektronik der Zukunft. Das BMBF-geförderte Projekt im Rahmen des NanoMatFutur-Programmes verwendet Nanopartikel mit definierten Formen und Anordnungen in Polymeren, um transparente Elektroden beispielsweise für berührungsempfindliche Bildschirme und Solarzellen zu fertigen. Chemiker, Materialwissenschaftler und ein Ingenieur arbeiten sehr eng im Team, um neue Materialien zu entwickeln, die mit den wohlbekannten Methoden des Nassbeschichtens und Druckens verarbeitet werden können.

    NanoSpekt

    Publikationen:

    NanoConfine: Anordnung von Partikeln in Emulsionstropfen

    Nanopartikel, die in Emulsionstropfen gefangen sind, reagieren auf ihre räumliche Beschränkung je nach eingesetztem Tensid. Einige von ihnen ordnen sich in reguläre „Suprapartikel“ an, vollständig definierten Strukturen, die an Edelgaskondensate oder kleine Metallcluster erinnern. Wir untersuchen in diesem DFG-finanzierten Projekt, wie Nanopartikel miteinander und Flüssig-Flüssig-Grenzflächen wechselwirken. Tanja Schilling an der Universität Luxemburg verwendet Simulationen, um die Strukturbildung vorherzusagen und zu verstehen, wir erforschen sie experimentell.

    SteelParticles: Kolloidale Charakterisierung von Partikeln aus Stahl

    Kleine Partikel spielen eine große Rolle in modernen Stählen. Die Dillinger Hütte, ein Stahlproduzent im Saarland, kooperiert mit uns, um diese Partikel mit Methoden zu charakterisieren, die wir für Kolloide entwickelt haben, und die bisher in der Metallographie noch wenig eingesetzt werden.

    SteelParticles

    Proceedings:
    www.aimnet.it/la_metallurgia_italiana/2017/marzo/Hegetschweiler.pdf

    Confelcon: Konforme elektrische Kontakte

    confelcon graphicDie Verknüpfung von biologischen Objekten mit elektronischen Geräten erfordert weiche elektrische Kontakte. Wir entwickeln und fabrizieren mikrostrukturierte adhäsive Kontaktelemente aus elektrisch leitfähigen Materialien. Eine genaue Charakterisierung dieser Elemente zeigt die Verbindung von adhäsiven und elektrischen Eigenschaften auf. Außerdem erforschen wir Anwendungen der Elemente als elektrisch schaltbare mechanische Kontakte.

    ActiN: Aktive Nanokomposite

    Eingebettete Nanopartikel verleihen heutigen Nanokompositen nützliche Eigenschaften wie Farbe, Festigkeit oder hohen Brechungsindex. Ihre Anordnung beeinflusst diese Eigenschaften, verändert sich aber für gewöhnlich nach der Herstellung nicht, weil die Partikel zu stark in die Matrix eingebunden sind. Wir erforschen Nanokomposite, in denen sich metallische Nanopartikel bewegen und die sich auf einen Stimulus reorganisieren können. Dadurch ändert sich beispielsweise die Farbe des Komposits. In diesem Projekt stellen wir Modell-Partikel her und untersuchen, wie sie so eingebunden werden können, dass sie eine gewisse Mobilität erhalten.

    ActiN

    IMPROVe-STEM: Neue Materialien für die Vermehrung von Stammzellen

    IMPROVe-STEM_3 Dieses interdisziplinäre Projekt zielt auf die skalierbare Gewinnung mesenchymaler Stammzellen mithilfe neuer Trägermaterialien für ihre Vermehrung ab. Im Zusammenarbeit mit Zellbiologen, Biochemikern, Chemikern und Materialwissenschaftlern modifizieren wir die Oberflächen von Mikrokugeln so, dass die Zellhaftung verbessert wird, das Zellwachstum gefördert wird und die Zellen sich leicht von den Mikrokugeln ablösen können. Der materialorientierte Teil des Projektes erfordert die Oberflächencharakterisierung von Partikeln mit Durchmessern von etwa 100 µm und ihre anschließende Modifizierung mit Methoden wie Polymeraufpfropfen, Plasmaaktivierung, und Veränderungen von Oberflächenrauheit und Ladung. Das Projekt wird vom „Europäischen Fonds für regionale Entwicklung“ INTERREG gefördert.

    IMPROVe-STEM_2IMPROVe-STEM_1

    DINAFFF: Untersuchung von Nanopartikeln mittels Feld-Fluss-Fraktionierung

    Mit der Feld-Fluss-Fraktionierung kann man Partikel nach Größe trennen, aber die Methode leidet oft unter Partikelverlusten durch Adsorption und Agglomeration. Dieses AiF-ZIMM-Projekt (unterstützt von Geldern des BMWi) will solche Verluste minimieren und FFF zu einer Standard-Methode machen, um Nanopartikel in Produkten, der Umwelt und in Lebensmitteln erkennen zu können.

    HOP-X: Hybride Partikel-Polymer-Röntgenbildplatten

    Digitale Bildplatten für medizinisches Röntgen basieren auf Keramiken. Dieses Projekt entwickelt unterstützt vom BMBF Röntgenbildplatten, die auf einem neuen Material aus leitfähigen Polymeren und anorganischen Partikeln bestehen. Die Partikel absorbieren und wandeln Röntgenphotonen um, die leitfähigen Polymere transportieren die entstehende Ladung zu Elektroden. Der Programmbereich Strukturbildung beschäftigt sich im Projekt hauptsächlich mit der Analyse der Kompositstrukturen aus Partikeln und Polymeren, der Entstehung der Struktur bei der Herstellung, und ihren Effekten auf die Leistungsfähigkeit der Bildplatten.

    AggloTox: Agglomeration von Nanopartikel-Protein-Mischungen

    Mischungen aus Nanoaprtikeln und Proteinen neigen dazu, hybride Agglomerate zu bilden. Wir interessieren uns für die Agglomerationsmechanismen und die Strukturen der entstehenden Agglomerate, um ihre Rolle in der Medizin, Ökologie und den Biomaterialien besser zu verstehen.


    Formation Mechanism for Stable Hybrid Clusters of Proteins and Nanoparticles (ACS)

    ACS NANO, DOI: 10.1021/acsnano.5b01043

    MobiNano: Mobilität und Wechselwirkung agglomerierender Nanopartikel

    Wechselwirkungen treiben Partikel zur Agglomeration, Mobilität lässt sie diesem Antrieb folgen. Wir nutzen Fluidik und Synchrotron-Kleinwinkelstreuung (SAXS), um frühe Stadien der Agglomeration zu untersuchen. Die Ergebnisse helfen uns dabei, die Bildung von Kompositen besser zu verstehen, geben Einblick in Kristallisationsprozesse und in Phänomene der Biomineralisation.