Young's modulus, fracture strength, and Poisson's ratio of nanocrystalline diamond films

Young's modulus, fracture stress, and Poisson's ratio are important mechanical characteristics for micromechanical devices. The Poisson's ratio of a material is a good measure to elucidate its mechanical behavior and generally is the negative ratio of transverse to axial strain. A nanocrystalline (NCD) and an ultrananocrystalline (UNCD) diamond sample with grain boundaries of different chemical and structural constitutions have been investigated by an ultrasonic resonance method. For both samples, the elastic moduli are considerably reduced, compared with the elastic modulus of single crystal diamond (sc-diamond). Depending on the chemical and structural constitution of grain boundaries in nano- and ultrananocrystalline diamond different values for Poisson's ratio and for the fracture strength are observed. We found a Poisson's ratio of 0.201 ± 0.041 for the ultrananocrystalline sample and 0.034 ± 0.017 for the nanocrystalline sample. We discuss these results on the basis of a model for granular media. Higher disorder in the grain boundary leads to lower shear stiffness between the single grains and ultimately results in a decrease of Young's and shear modulus and possibly of the fracture strength of the material.