Small Methods , 2023, 7 (8), 2300193_1-11.

Toward MBenes Battery Electrode Materials: Layered Molybdenum Borides for Li-Ion Batteries

Majed, Ahmad | Torkamanzadeh, Mohammad | Nwaokorie, Chukwudi F. | Eisawi, Karamullah | Dun, Chaochao | Buck, Audrey | Urban, Jeffrey J | Montemore, Matthew M. | Presser, Volker | Naguib, Michael

Lithium-ion and sodium-ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2AlB2) as novel, high-performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2AlB2 shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g−1 achieved after 500 cycles at 200 mA g−1. It is also found that surface redox reactions are responsible for Li storage in Mo2AlB2, instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2AlB2 exhibits a specific capacity of 150 mAh g−1 at 20 mA g−1. These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms.

OPEN ACCESS Weiterlesen