In this paper, we studied the effects of the aluminium dopant concentration on the optical and electrical properties of aluminium doped zinc oxide (AZO) thin films grown on soda-glass substrates by a simple chemical method. The amount of aluminium in the compound was varied from 0 to 5 atomic percent (at.%), and the typical thickness of the films produced was about 300 nm. The thin films were characterized by scanning electron microscopy and X-ray diffraction to investigate the morphology and crystallinity of the samples. The optical properties of the thin films were studied by UV-Vis spectroscopy to determinate absorption, transmittance, and the diffuse reflectance. In addition, the photoluminescence properties of the thin films, excited with a 320 nm UV laser beam, were investigated. The effects of the aluminium concentration on these optical properties are discussed. The films with 2 and 5 % doping had excellent optical transmittance (~85-90 %) in the 400-1100 nm wavelength range. The photoluminescence spectra of the AZO films revealed UV near band edge emission peaks in the 378-401 nm range and an oxygen-vacancy related peak around 471 nm. The addition of aluminium changed the band gap of zinc oxide from 3.29 to 3.41 eV, and the appearance of a new level was observed in the band gap at the higher aluminium doping concentrations. The AZO thin films showed good conductivity (in the order of 10-2Ω cm) which allows their use as transparent electrodes. Moreover, the AZO thin films were stable in open air for 30 days.
Journal of Materials Science: Materials in Electronics , 2013, 24 (9), 3338-3343.