The synthesis of an amphiphilic three-arm block copolymer (AB)3-BCP, which consists of poly(methyl methacrylate) (PMMA) and poly(butyl methacrylate) (PBMA) in the hydrophobic inner block, is reported. The hydrophilic block segment is based on poly(2-hydroxyethyl methacrylate) (PHEMA) originating from 2-(trimethylsiloxyl)ethyl methacrylate (HEMA-TMS). The preparation is carried out in two steps using a core-first approach. Using atom transfer radical polymerization (ATRP) as a controlled polymerization technique, three (AB)3-BPCs with HEMA contents of 15 to 38 mol−1 % are prepared, applying different reaction conditions. Porous structures are generated from these BCPs by applying a self-assembly and nonsolvent-induced phase separation (SNIPS) protocol. Complex surface structures are observed using scanning electron microscopy (SEM). Bulk morphologies are investigated for a better understanding of the underlying self-assembly. For PHEMA-rich (AB)3-BCPs, non-regular lamellar microphases are observed in transmission electron microscopy (TEM) and confirmed by small-angle X-ray scattering (SAXS). The porous structures and their expected swelling characteristics are analyzed using atomic force microscopy (AFM) in air and water. Time-resolved measurements in water indicate a rapid swelling after immersion into the water bath. The present study paves the way for exciting porous materials based on the herein synthesized amphiphilic three-arm block copolymers useful for applications as absorber materials and coatings.
Macromolecular Rapid Communications , 2025, 46 (12), 2500077.