Switching between crystallization and amorphous agglomeration of alkyl thiol-coated gold nanoparticles

Crystalline and amorphous materials composed of the same atoms exhibit strikingly different properties. Likewise, the behavior of materials composed of mesoscale particles depends on the arrangement of their constituent particles. Here, we demonstrate control over particle arrangement during agglomeration. We obtain disordered and ordered agglomerates of the same alkyl thiol-coated gold nanoparticles depending on temperature and solvent. We find that ordered agglomeration occurs exclusively above the melting temperature of the ligand shells. Many-particle simulations show that the contact mechanics of the ligand shells dominate the order-disorder transition: Purely spherical particle-particle interactions yield order, whereas localized "stiction" between the ligand shells leads to disorder. This indicates that the "stickiness" and the packing of the agglomerates can be switched by the state of the ligand shells. It suggests that contact mechanics govern ordering in a wide range of nanoparticles.