Sub-micrometer novolac-derived carbon beads for high performance supercapacitors and redox electrolyte energy storage

Carbon beads with sub-micrometer diameter were produced with a self-emulsifying novolac-ethanol-water system. A physical activation with CO2was carried out to create a high microporosity with a specific surface area varying from 771 (DFT) to 2237 m2/g (DFT) and a total pore volume from 0.28 to 1.71 cm3/g. The carbon particles conserve their spherical shape after the thermal treatments. The controllable porosity of the carbon spheres is attractive for the application in electrochemical double layer capacitors. The electrochemical characterization was carried out in aqueous 1 M Na2SO4(127 F/g) and organic 1 M tetraethylammonium tetrafluoroborate in propylene carbonate (123 F/g). Furthermore, an aqueous redox electrolyte (6 M KI) was tested with the highly porous carbon and a specific energy of 33 W·h/kg (equivalent to 493 F/g) was obtained. In addition to a high specific capacitance, the carbon beads also provide an excellent rate performance at high current and potential in all tested electrolytes, which leads to a high specific power (>11 kW/kg) with an electrode thickness of ca. 200 ?m.