Single layer graphene induces load-bearing molecular layering at the hexadecane-steel interface

The influence of a single layer graphene on the interface between a polished steel surface and the model lubricant hexadecane is explored by high-resolution force microscopy. Nanometer-scale friction is reduced by a factor of three on graphene compared to the steel substrate, with an ordered layer of hexadecane adsorbed on the graphene. Graphene furthermore induces a molecular ordering in the confined lubricant with an average range of 4–5 layers and with a strongly increased load-bearing capacity compared to the lubricant on the bare steel substrate.