Revealing the atomic and electronic structure of a SrTiO3/LaNiO3/SrTiO3heterostructure interface

The atomic structures of SrTiO3(STO)/LaNiO3(LNO)/STO heterostructure interfaces were investigated by spherical aberration-corrected (CS) (scanning) transmission electron microscopy. Atomic displacement and lattice distortion measurements and electron energy loss spectroscopy (EELS) were used to quantitatively analyze the distortion of the interfacial octahedra and the bond length at the interfaces. Combined with high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy analyses, two distinct interfacial atomic terminating layers are unambiguously determined. Ensuing quantitative HRTEM measurements revealed that the Ni-O bond length in the interfacial octahedral is elongated at the bottom interface (-NiO2-SrO-). Atomic displacement shows structural relaxation effects when crossing the interfaces and lattice distortions across the interface is more pronounced in LNO than in STO. The Ti/O atomic ratio, La and Ti relative atomic ratio as derived by EELS quantification indicate non-stoichiometric composition at the interfaces. Distinct fine structures of Ti-L2,3edge and O-K edge at the bottom and top interfaces are observed. By comparison, we are able to estimate Ti valency at both interfaces. Combining the structural distortions and Ti valency, the polar discontinuity and charge transfer at the interfaces are discussed.