In this study, we investigate two different activated carbons and four conductive additive materials, all produced in industrial scale from commercial suppliers. The two activated carbons differed in porosity: one with a narrow microporous pore size distribution, the other showed a broader micro-mesoporous pore structure. Electrochemical benchmarking was carried out in one molar tetraethylammonium tetrafluoroborate in acetonitrile. Comprehensive structural, chemical, and electrical characterization was carried out by varied techniques. This way, we correlate the electrochemical performance with composite electrode properties, such as surface area, pore volume, electrical conductivity, and mass loading for different admixtures of conductive additives to activated carbon. The electrochemical rate handling (from 0.1 A g−1to 10 A g−1) and long-time stability testing via voltage floating (100 h at 2.7 V cell voltage) show the influence of functional surface groups on carbon materials and the role of percolation of additive particles.