Lithium-ion batteries play a crucial role in powering electric vehicles and portable electronics, making them indispensable in modern technology and driving a significant increase in global lithium demand. With more and more batteries reaching their end of life and the challenges of lithium extraction, including rising prices, geopolitical constraints, and environmental concerns, the efficient recovery of lithium from spent battery cells is crucial for sustainable battery recycling. While state-of-the-art battery recycling focuses mainly on pyro- and hydrometallurgical methods, electrochemical recycling methods can be an environmentally friendly, energy-efficient, and cost-effective alternative. This study optimizes an energy-efficient electrochemical method for selective LiCl extraction from leaching solutions derived from cathode materials of a typical battery cell format (lithium cobalt oxide (LCO)). This places our electrochemical separation within the hydrometallurgical processing of spent battery materials (black mass) and prior to subsequent lithium refining steps. Applying carbon-coated lithium iron phosphate (LFP) electrodes for selective lithium recovery yielded an average uptake capacity of 11.4 mgLi gLFP/C-1 over 300 cycles, maintaining a significant discharge capacity (30 mAh g-1) after 500 cycles.
2025, 367 132770.