The performance of supercapacitors is determined by the electrical double layers (EDLs) formed at electrolyte/electrode interfaces. To understand the energy storage mechanism underlying supercapacitors, molecular dynamics (MD) simulations were used to study the capacitive behavior of carbon-based supercapacitors with room-temperature ionic liquid (RTIL) electrolytes. The performance of porous supercapacitors was found to be correlated with the ion/pore size and applied voltage. Supercapacitors composed of RTILs on the outer, positively curved surfaces of onion-like carbons (OLCs) or carbon nanotubes (CNTs) exhibited significant effects on capacitance and the distinctive feature that differential capacitance varies only weakly with voltage. Investigations of temperature influence revealed a positive temperature dependence of capacitance for OLC-based supercapacitors and a weak dependence of capacitance on temperature for CNT-based supercapacitors, in line with experimental observations. Molecular insights into RTIL-based supercapacitors, reviewed in this Perspective, could facilitate the design and development of a new generation of energy storage devices.