Biohybrid hydrogels that change their mechanical properties in response to pharmacological cues hold high promises as externally controlled drug depots for biomedical applications. In this study, we devise a generically applicable method for the synthesis of micrometer-scale, injection-ready biohybrid materials. We use droplet-based microfluidics to generate monodisperse pre-microgel fluid droplets, wherein which we react fluorescein-modified 8-arm poly(ethylene glycol) with a thiol-functionalized humanized anti-fluorescein single chain antibody fragment and vinylsulfonefunctionalized 8-arm poly(ethylene glycol), resulting in the formation of stable, narrowly dispersed supramolecular microgels (30 and 150μm diameter). We demonstrate that the addition of free fluorescein to these microgels results in a weakening of their hydrogel structure, eventually leading to its disintegration. This method of formation of pharmacologically responsive biohybrid hydrogels in an injection-ready formulation is a pioneering example of a general approach for the synthesis of biohybrid hydrogel-based drug depots for biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.