Understanding how nanoparticles form stable colloids is fundamental to their practical applications. Nonlinear ligands are known to increase the stability of nanoparticles in apolar solvents compared to shells of linear alkyl chains. Here, we reveal the molecular origin of this colloidal stability. We observe that even a single methyl side chain can suppress disorder–order transitions in the ligand shell, with double bonds or branches leading to drastic decreases in agglomeration temperature in such dispersions. Through a combination of temperature-dependent X-ray scattering and molecular dynamics simulations, we show that these simple structural modifications prevent ligand molecules from forming ordered bundles, maintaining shell disorder even at temperatures approaching solvent freezing. The absence of ligand order enhances colloidal stability by weakening attraction between the ligand shells via a combination of energetic and entropic factors. This mechanism extends dispersion stability by more than 100 K compared to linear ligands of equivalent length. Our findings provide a molecular-level explanation for the enhanced stability previously observed with branched and unsaturated ligands, offering an effective strategy for engineering nanoparticle dispersions that remain stable across broad temperature ranges.
ACS Nano , 2025, 19 (39), 35127−35140.
