Exploring the potential of electroless and electroplated noble metal–semiconductor hybrids within bio- and environmental sensing

Over the last two decades, the rapid development and widespread application of nanomaterials has significantly influenced research in various fields, including analytical chemistry and biosensing technologies. In particular, the simple functionalization and tuning of noble metal nanoparticle (NP) surface chemistry resulted in the development of a series of novel biosensing platforms with quick read-out and enhanced capabilities towards specific analyte detection. Moreover, noble metal NPs possess a number of unique properties, viz. high surface-to-volume ratio and excellent spectral, optical, thermal, electrical and catalytic characteristics. This manuscript provides an elaborate review on galvanic noble metal NPs deposited onto semiconductor surfaces, from the preparation stage towards their application in biosensors and gas sensing. Two types of deposition approaches, viz. galvanic displacement/electroless and conventional electroplating, are introduced and compared. Furthermore, the analytical merit of hybrid nanomaterials towards the improvement of sensing abilities is highlighted. Finally, some limitations and challenges related to progress in the development and application of analytical devices based on electroless and electroplated noble metal NPs-semiconductor hybrids (NMNPsHs) in biochemical and environmental sensing are discussed.