Crystal microstructure of annealed nanocrystalline chromium studied by synchrotron radiation diffraction

The microstructure of electrodeposited nanocrystalline chromium (n-Cr) was studied by using synchrotron radiation (SR) diffraction, SEM, TEM, and EDX techniques. The as-prepared n-Cr samples show the standard bcc crystal structure of Cr with volume-averaged column lengths varying from 25 to 30 nm. The grain growth kinetics and the oxidation kinetics were studied by time resolved SR diffraction measurements with n-Cr samples annealed at 400, 600, and 800°C. The grain growth process is relatively fast and it occurs within the first 10 min of annealing. The final crystallite size depends only on the annealing temperature and not on the initial grain size or on the oxygen content. The final volume-averaged column lengths observed after 50 min annealing are 40(4), 80(1), and 120(2) nm for temperatures 400, 600, and 800°C, respectively. It is shown that annealing ex situ of n-Cr at 800°C both under vacuum and in air gives a grain growth process with the same final crystallite sizes. The formation of the Cr2O3and CrH phases is observed during annealing.