Bi-phasic nanostructures for functional applications

Biphasic solid state composites of the type metal/metal oxide or element/element oxide can be synthesized in one pot chemical reactions using so called molecular "single source precursors". Due to their singular genesis these composites show peculiar hetero-structures based on core-shell hierarchies such as superlattices and composite nanospheres or nanowires. They exhibit superior or new functional properties compared to their individual constituent compounds. In the current work, we review in particular the synthetical and mechanistical approach of bi-phasic (Al/Al2O3) nanostructures such as nanospheres, nanowires and nanoloops using a single source precursor. Other bi-phasic materials of the general formula M/MOx(for example M = Ge, Sn, Pb) are addressed for comparison. The impact of different synthetical conditions as well as of modification of surfaces by laser techniques and their technological relevance are presented briefly. Additionally, functional applications of the prepared surfaces are explained with some outstanding case studies. These case studies are primarily concerned with their use as biomaterials and their application in medicine as well as with their use as thin films for optics and functional surfaces.