Atomic-scale stick-slip friction on a metallic glass in corrosive solutions

Atomic-scale friction measurements were performed on a metallic glass in corrosive solutions using an atomic force microscope. An irregular stick-slip motion was observed and attributed to the amorphous structure of corroded surfaces. The friction data are interpreted based on the Prandtl-Tomlinson model by considering the disordered surface interaction potential. The transition between different stick-slip regimes, namely smooth sliding, slips over a basic lattice distance or multiple lattice sites, is a position-dependent characteristic on the amorphous surface. The stronger corrosion causes a significant increase in the probability of multiple slips accompanied by larger maximal forces and leads to a higher average friction. Our findings contribute to the understanding of atomic-scale friction on amorphous surfaces and fundamental friction mechanisms in corrosive conditions.