The ageing of spherical gold nanoparticles having 6-nm-diameter cores and a ligand shell of dodecanethiol is investigated under different storage conditions. Losses caused by agglomeration and changes in optical particle properties are quantified. Changes in colloidal stability are probed by analytical centrifugation in a polar solvent mixture. Chemical changes are detected by elementary analysis of particles and solvent. Fractionation occurs under all storage conditions. Ageing is not uniform but broadens the property distributions of the particles. Small-number statistics in the ligand shell density and the morphological heterogeneity of particles are possible explanations. Washing steps exacerbate ageing, a process that could not be fully reversed by excess ligands. Dry storage is not preferable to storage in solvent. Storage under inert argon atmosphere reduces losses more than all other conditions but could not prevent it entirely.