Adhesion behavior of polymer networks with tailored mechanical properties using spherical and flat contacts

Four acrylate-based networks were developed such that they possessed similar glass transition temperature (~-37 °C) but varied in material stiffness at room temperature by an order of magnitude (2-12 MPa). Thermo-mechanical and adhesion testing were performed to investigate the effect of elastic modulus on adhesion profiles of the developed samples. Adhesion experiments with a spherical probe revealed no dependency of the pull-off force on material modulus as predicted by the Johnson, Kendall, and Roberts theory. Results obtained using a flat probe showed that the pull-off force increases linearly with an increase in the material modulus, which matches very well with Kendall's theory.