Living Therapeutic Materials (LTMs) are a promising alternative to polymeric drug carriers for long term release of biotherapeutics. LTMs contain living drug biofactories that produce the drug using energy sources from the body fluids. To clarify their application potential, it is fundamental to adapt biocompatibility and cytotoxicity assays applied from non-living biomaterials and therapeutics to evaluate how LTMs interact with host cells. Here, we have established a first step in this direction, by developing a practical workflow to parallelize in vitro assessment of minimal safety and cytocompatibility properties of bacterial LTMs. It allows systematic monitoring and quantification of the dynamic evolution of the bacterial population (growth, metabolic activity) in parallel to quantify the response of different mammalian cells to LTM supernatants with regards to cytotoxicity and release of pro-inflammatory cytokines over a period of 7 days using a maximum of 10 samples. The protocol was tested with a Pluronic-based thin film containing ClearColi. The results show no cytotoxic effects of ClearColi containing hydrogels in three mammalian cell lines, and no induction of pro-inflammatory cytokines under the tested conditions. This workflow represents a first step in establishing a roadmap for the safety assessment of LTMs, and investigation of biocompatibility potential of future living therapeutic devices.