Here, model blister-like soft thermo-pneumatic artificial muscles with the embedded nanofibers impregnated with ethanol are developed. The muscles are essentially blister-like thermo-pneumatic soft actuators (BTSAs), which deflect in response to heat supplied to their bottom. The resulting deflections are on the scale of 1 cm, and the BTSAs are operational for several cycles. They are able to raise the artificial rigid scales, spines or fur/thin fibers attached to them emulating animals such as pangolin, hedgehog and porcupine. They are also capable of removing the stickiest adhesive tapes attached to them, and thus hold great promise for biomedical applications where artificially grown skin patches should be removed from an underlying substrate without being damaged. The theory of the BTSA proposed in this work is in reasonable agreement with the acquired experimental data.