Recent experiments in which arrays of compliant fibrils are compressed axially against a rigid surface and then released have shown that there is load-displacement hysteresis during this process, accompanied by buckling and unbuckling of the fibrils. Furthermore, the adhesive performance of the system is decreased by such prior buckling. We present a model describing the buckling and postbuckling characteristics of a fibril with an aspect ratio of 10 or greater. The possibility during buckling of partial detachment of the end of the fibril is taken into account. The results are presented and discussed for both load and displacement control and the load-displacement hysteresis is identified. It is found that due to instabilities sudden spreading and shrinkage of the adhered area at the end of the fibril can accompany the hysteresis. Numerical results are provided to substantiate the findings and possible reasons for the observed influence of buckling on adhesive performance are reviewed.