Friction in Passive Tactile Perception Induces Phase Coherency in Late Somatosensory Single Trial Sequences

Event related potentials (ERPs) represent a noninvasive means for studying sensory and cognitive processes that occur in response to particular stimuli. Here we report on a phase measure for estimating single trial interaction of late somatosensory potentials (LSPs) following a tribological well defined mechanical stimulation of the human fingertip. Stimuli are presented via a programmable Braille-display with actively switchable pins which was slid along the apex of the passive fingertip, i.e., the fingertip rested stationarily in a finger holding system with circular opening at the bottom. The event was the raising and the lowering of either one, three or five lines of pins. Differences were identified by measures based on instantaneous phase synchronization to the stimuli across trials, in particular the wavelet phase synchronization stability (WPSS) measure for single trial sequences of LSPs. In particular, we show that the higher the friction the stronger and more localized the induced phase coherency is. We concluded that the WPSS analysis of single sequences of LSPs represents a reliable method which allows for the quantification of brain responses upon distinct tactile stimuli.