Energy Materials

The Research Department Energy Materials explores electrochemical materials for sustainable energy storage, innovative water technologies, and eco-friendly recycling solutions.

The Research Department Energy Materials develops materials that can effectively transport and store ions and electrical charges across several length scales. We develop materials that can effectively transport and store ions and electrical charges across several length scales o. Important electrode materials are nanoporous carbons, oxides, carbides, and sulfides, and their hybrids. A key feature is our streamlined workflow from material synthesis, comprehensive structural and chemical material characterization, electrochemical benchmarking, and complementary in situ analysis.

A particular focus is on 2D materials, especially MXene and MBene, to enable rapid charge/discharge supercapacitors and next-next-generation sodium- and lithium-ion batteries. The reversible uptake and controlled release of ions also enables the desalination of seawater and ion separation to separate pollutants such as lead or recover valuable materials such as lithium.

We use various characterization methods, including in situ, for a comprehensive mechanistic understanding. In addition, we are increasingly using digital methods for predictive materials research and digital twinning of battery research. Our collaborations include international basic research as well as industrial projects.

Prof. Dr. Volker Presser
Head of Energy Materials

Kontakt

B.Sc. Anna Seltmann
Technician
Phone: +49 (0)681-9300-230
Laboratory Safety Officer
M.Sc. Zeyu Fu
Technician
Phone: +49 (0)681-9300-368
Secretary
Sylvia de Graaf
Secretary
Phone: +49 (0)681-9300-501
Team Members
Phone: +49 (0)681-9300-151
E-mail: peter.burger@leibniz-inm.de
Phone: +49 (0)681-9300-218
E-mail: jean.ruthes@leibniz-inm.de
Phone: +49 (0)681-9300-368
E-mail: zeyu.fu@leibniz-inm.de
Phone: +49 (0)681-9300-157
E-mail: ayush.gadpayle@leibniz-inm.de
Phone: +49 (0)681-9300-108/251
E-mail: matthias.haller@leibniz-inm.de
Phone: +49 (0)681-9300-208
E-mail: nicolas.huth@leibniz-inm.de
Phone: +49 (0)681-9300-374
E-mail: cansu.koek@leibniz-inm.de
Phone: +49 (0)681-9300-268
E-mail: chiraz.layouni@leibniz-inm.de
Phone: +49 (0)681-9300-374
E-mail: Thao.Le@leibniz-inm.de
Phone: +49 (0)681-9300-230
E-mail: mingren.liu@leibniz-inm.de
Phone: +49 (0)681-9300-208
E-mail: meenu.meenu@leibniz-inm.de
Phone: +49 (0)681-9300-314
E-mail: said.mondahchouo@leibniz-inm.de
Phone: +49 (0)681-9300-402
E-mail: burak.oelmez@leibniz-inm.de
E-mail: Volker.Presser@leibniz-inm.de
Phone: +49 (0)681-9300-218
E-mail: asia.sarycheva@leibniz-inm.de
Phone: +49 (0)681-9300-108/251
E-mail: yassine.seffar@leibniz-inm.de
Phone: +49 (0)681-9300-230
E-mail: anna.seltmann@leibniz-inm.de
Phone: +49 (0)681-9300-319
E-mail: burcu.tan@leibniz-inm.de
Phone: +49 (0)681-9300-365
E-mail: Delvina.Tarimo@leibniz-inm.de
Phone: +49 (0)681-9300-365
E-mail: gracita.tomboc@leibniz-inm.de
Phone: +49 (0)681-9300-402
E-mail: bin.wang@leibniz-inm.de
Phone: +49 (0)681-9300-151
E-mail: wensen.wang@leibniz-inm.de
Phone: +49 (0)681-9300-268
E-mail: liying.xue@leibniz-inm.de
Research

Material synthesis

Our team specializes in developing, analyzing, and applying electrochemically active materials and interfaces, focusing on integrating electrochemical activity with electrical conductivity through advanced hybrid materials. We utilize techniques such as sol-gel processes, atomic layer deposition, and electrospinning, supported by comprehensive characterization tools like electron microscopy, X-ray diffraction, and spectroscopy. We extend our work to in situ and in operando methods to deepen our understanding of these materials. Our expertise encompasses a wide array of materials, including carbon and 2D materials like carbon onions and MXene, as well as diverse metal oxides and conversion materials.

Energy storage

Electrochemical energy storage is at the core of sustainable technologies to store, convert, and recover energy. Our research team explores next-generation electrode materials for Sodium- and Lithium-ion batteries, advanced supercapacitors, and novel hybrid systems. A particular focus is on next-next generation electrode materials, including MXene, high-entropy materials, and nanoscaled hybrid materials. We capitalize on an array of synthesis and characterization methods to employ intercalation, conversion reactions, and alloying reactions for boosting the charge storage capacity and charge/discharge rates. Digitalization, digital twinning, and modelling of energy materials and electrode fabrication complements our research portfolio, including basic research and industrial partnerships.

Water technologies

Energy materials are not just prime candidates for electrochemical energy storage but also are gateways to novel water technologies. Via processes much like for batteries and supercapacitors, that is, redox processes (ion intercalation, alloying and conversion reactions) and ion electrosorption, we can manage the flow of ions. We can selectively immobilize and extract specific ions and drive that process not by high pressure or membrane filtration, but by electrochemical processes and ion selective materials. Our key research activities include general seawater desalination, Lithium-ion extraction, and heavy metal ion removal. Our vision is to have electrochemical processes for an array of elements and compounds for energy-efficient deionization toward circular material use, local elemental harvesting, and pollutant removal.

Projects funded by the European Regional Development Fund (ERDF)

Continuous Electrochemical Lithium Extraction (eLiFlow)

The energy transition and the rise of electromobility are driving a significant increase in the demand for lithium-ion batteries. At the same time, lithium as a raw material is geographically limited, and traditional extraction methods—particularly conventional mining—are associated with high energy and water consumption. Consequently, alternative and more sustainable sources and processes are gaining importance. These include geothermal waters as well as lithium-bearing process waters and hydrometallurgical solutions derived from battery recycling.

As part of the eLiFlow project, the INM is developing a continuous electrochemical process designed for the highly selective separation of lithium ions from aqueous media and their recovery in a concentrated product solution. The core of this technology is a redox flow cell featuring lithium-ion-selective ceramic and hybrid membranes, alongside circulating redox electrolytes. This approach enables the separation of lithium ions without the intensive use of chemicals.

The primary objectives of the project are:

  • The development of novel lithium-ion-selective membranes.
  • The establishment of environmentally friendly redox electrolytes based on organic compounds.
  • The investigation of realistic model solutions from battery recycling and lithium-bearing waters.

The eLiFlow cell is being optimized with regard to selectivity, energy requirements, long-term stability, and economic viability. The anticipated results are intended to provide the foundation for the future scaling of this technology and the establishment of regional lithium value chains in the Saarland.

The project “eLiFlow – Continuous Electrochemical Lithium Extraction” is funded by the European Union through the European Regional Development Fund (ERDF). Further information on funding provided by the European Union and the ERDF can be found here:

https://www.saarland.de/DE/portale/eu-foerderportal/strukturfondsfoerderung/efre/efre20212027

Publications

Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements

Srimuk, Pattarachai | Su, Xiao | Yoon, Jeyong | Aurbach, Doron | Presser, Volker

Nature Reviews Materials , 2020, 5 517–538.
https://doi.org/10.1038/s41578-020-0193-1

OPEN ACCESS Discover more
Redox Flow Battery for Continuous and Energy-Effective Lithium Recovery from Aqueous Solution

Wang, Lei | Arnold, Stefanie | Ren, Panyu | Wang, Qingsong | Jin, Jun | Wen, Zhaoyin | Presser, Volker

ACS Energy Letters , 2022, 7 (10), 3539-3544.
https://doi.org/10.1021/acsenergylett.2c01746

OPEN ACCESS Discover more
The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading

Pameté, Emmanuel | Köps, Lukas | Kreth, Fabian A. | Pohlmann, Sebastian | Varzi, Alberto | Brousse, Thierry | Balducci, Andrea | Presser, Volker

Advanced Energy Materials , 2023, 13 (29), 2301008.
https://onlinelibrary.wiley.com/doi/10.1002/aenm.202301008

OPEN ACCESS Discover more
Continuous transition from double-layer to Faradaic charge storage in confined electrolytes

Fleischmann, Simon | Zhang, Yuan | Wang, Xuepeng | Cummings, Peter T. | Wu, Jianzhong | Simon, Patrice | Gogotsi, Yury | Presser, Volker | Augustyn, Veronica

Nature Energy , 2022, 7 pages 222–228.
https://doi.org/10.1038/s41560-022-00993-z

OPEN ACCESS Discover more
Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries

Arnold, Stefanie | Gentile, Antonio | Li, Yunjie | Wang, Qingsong | Marchionna, Stefano | Ruffo, Riccardo | Presser, Volker

Journal of Materials Chemistry A , 2022, 10 (19), 10569-10585.
http://dx.doi.org/10.1039/D2TA00542E

OPEN ACCESS Discover more