

CHEMICAL ANALYTICS AT INM

APPLICATION POTENTIALS OF ATOMIC SPECTROMETRY, CHROMATOGRAPHY AND MASS SPECTROMETRY FOR NEW MATERIALS AND BIOLOGICAL SAMPLES

Dr. Claudia Fink-Straube, 28.06.2019

CHEMICAL ANALYTICS AT INM

Introduction 1 1.1 Qualitative and quantitative analysis, LOD, LOQ Source of errors in the analytical chemistry, kind of errors 1.2 1.3 Introduction into statistics 1.4 Calibration (external, internal, standard addition) 2 **Instrumental equipment of INM** 3 **Sample preparation** 3.1 Introduction 3.2 **Digestion techniques** 3.3 Micro wave **Atomic spectrometry** 4 Comparison: Atomic absorption and atomic emission 4.14.2 **AAS - Atomic Absorption Spectrometry OES - Optical Emission Spectrometry** 4.3 ICP-MS – Inductively Coupled Plasma – Mass Spectrometry 4.4 4.5 Examples 5 **Chromatography** 5.1Chromatographic separation, classification, comparison LC and GC 5.2 Gas chromatography coupled with Mass spectrometry 5.3 Liquid chromatography coupled with Mass spectrometry 5.4 Examples Questions 6 Literature 7

1.1 QUALITATIVE AND QUANTITATIVE ANALYSES, LOD, LOQ

Qualitative: WHAT? What kind of material, which substances?

- identification (evidence, if necessary after separation)
- precondition: enough sample material; >LOD→ precipitation reaction, flame colouration, GC/MS

Quantitative: HOW MANY? Amount of analytes

 precondition: qualitatively analysed; >LOQ → titration, gravimetry, ICP-OES, AAS, GC

Analytics of structure: chemical STRUCTURE, crystal structure → IR-, UV-VIS-spectroscopy, NMR

▶ 1.2 SOURCE OF ERRORS, KIND OF ERRORS

correctablereference materials,round robin tests

not eliminable variance of data

accurate result

- 😊 accuracy
- 😊 precision

1.3 INTRODUCTION INTO STATISTICS TERMS

> Arithmetic mean value

n = number of measurements

Distribution

mean square error of individual measurement

Variation coefficient (RSD)

$$CV = \frac{s}{\overline{x}} \cdot 100\%$$

Example: x ± s (CV) 19,48 ± 0,31 (1,6%)

Expectation value

 $\mu = \lim_{n \to \infty} \bar{\mathbf{x}}$

Most probable value of a series of measurements

 $\sigma = \lim_{n \to \infty} s$

Average random deviation of single measuring values of $\boldsymbol{\mu}$

➤ Variance

 σ^2

n = finite \rightarrow s $\neq \sigma$ s \rightarrow deviation of σ n = $\infty \rightarrow$ s = σ

1.3 INTRODUCTION INTO STATISTICS STANDARDISED GAUSSIAN DISTRIBUTION

Distribution of all values from arithmetic mean value

 $y \rightarrow$ distribution function

 $\sigma \rightarrow$ measure of scope of the distribution, standard deviation of x

für $n \rightarrow \infty x = \mu$ und $s = \sigma$

1.4 CALIBRATION LEAST SQUARES METHOD

 \rightarrow For quantification of compounds by relative methods

b blank value (Back ground signal)

- m sensitivity (gradient)
- x reference value (e.g. concentration)
- y measured value (intensity)

→ Minimum measured value depends on sensitivity

1.4 CALIBRATION STANDARD ADDITION

→ exact adaption of matrices
→ trace analysis
→ validation of method
→ high effort

 \rightarrow simultaneous determination of internal standard and analyte

 \rightarrow calibration line related to internal standard

 \rightarrow recovery rate; correction of the sample amount

2. INSTRUMENTAL EQUIPMENT OF INM ATOMIC SPECTROMETRY

Atomic absorption spectrometry (AAS) excitation with flame (F-AAS) or graphite furnace (GF-AAS) HR-CS AAS contrAA 700, Analytik Jena AG modes: F-AAS, GF-AAS, option for automated solid sampling

source. Analytik Jena

Optical emission spectrometry (OES)

Optical emission with induced coupled plasma (ICP OES)

ICP OES Ultima 2, Horiba Jobin Yvon

modes: aqueous and organic samples high salted samples, halogens

source. Horiba JY

2. INSTRUMENTAL EQUIPMENT OF INM INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY

source: Thermo Fisher SCIENTIFIC

HR-SF-ICP-MS ELEMENT XR, Thermo Fisher SCIENTIFIC

- Sensitivity down to lower pptrange
- Isotope Determination
- Single Particle Analysis

2. INSTRUMENTAL EQUIPMENT OF INM ELEMENTARY ANALYSIS AND SAMPLE PREPARATION

CHNOS analysis

MICRO cube and OXY cube

elementar Analysentechnik GmbH

source. elementar

Micro wave for preparation

Multiwave 3000,

Anton Paar GmbH

source: Anton Paar

13 Claudia Fink-Straube, 28.06.2019

www.leibniz-inm.de

2. INSTRUMENTAL EQUIPMENT OF INM CHROMATOGRAPHY

GC/MS (Gas chromatography coupled with mass spectrometry)

GC/MS QP 5050A, GC/MS QP 2010 DI

Autosampler CTC for headspace and direct injection; Shimadzu

GC-2014, Shimadzu

Direct injection

source. Shimadzu

2. INSTRUMENTAL EQUIPMENT CHROMATOGRAPHY

LC-ESI-MS (Liquid chromatography-Electrospray Ionization-Mass spectrometry)

HPLC (High Performance Liquid Chromatography)

HPLC including DAD (diode array detector)

RID (refractive index detector)

MSD (mass spectrometer)

LC 1260 Infinity with MSD SL, Agilent

source. Agilent

2. INSTRUMENTAL EQUIPMENT LC-ESI-QUADRUPOL-TIME-OF-FLIGHT -MASS SPECTROMETRY

source: Agilent

LC-HR-ESI-Q-TOF-MS 6545, Agilent

- Improved sensitivity for small molecules and fragile compounds
- ➢ Mass accuracy up to 0.8 ppm
- Structure elucidation by auto MS/MS mode

3. SAMPLE PREPARATION 3.1 INTRODUCTION

Wet chemical digestion techniques

- complete solution of analyte
- complete decomposition of matrix
- to avoid loss and contamination
- reduction of handling and process times
- save, reproducible, easy, little manual effort
- economical aspect of sample preparation!

3. SAMPLE PREPARATION 3.2 DIGESTION TECHNIQUE

Conventional methods

Digestion vessels from Berghof

inorganic chemistry digestion vessel

muffle furnace hot plate laboratory sand-bath Bunsen burner fusion melt

organic chemistry

Soxhlet extraction ultrasonic

Fusion melt at platinum vessel

Soxhlet extraction

→ As much as necessary, as few as possible !

3. SAMPLE PREPARATION 3.2 DIGESTION TECHNIQUE

Reaction equations

```
> biologic samples / organic substances

(CH_2)_n + 2 HNO_3 + \Delta h \rightarrow CO_2 + 2 NO + 2H_2O

> metals

6 H^+ + 3 Me + 2 HNO_3 + \Delta h \rightarrow 3 Me^{2+} + 2 NO + 4H_2O

> geological samples

SiO_2 + 4 HF + \Delta h \rightarrow SiF_4 + 2H_2O
```

→ As higher sample weight as greater gas volume and the resulting pressure

Rule of thumb kinetics:

Increasing of temperature at about 10°C doubled reaction rate
 Maximum of temperature are limited by boiling points of used acids

> Reaction in digestion vessels enables higher temperatures

3. SAMPLE PREPARATION 3.3 MICROWAVE

Microwave radiation

X - Rays	U.V.	VI	IS I.R	. Mic	ro waves	Radio waves
10 ⁻⁹	10 -8	10 ⁻⁷	10 ⁻⁶	10 ⁻³ 1	0 ⁻² 12.2 (cm wavelength (m)
	10 ¹⁶		10 ¹⁴		2450 M	1Hz frequency (Hz)
nucleus electrons			mol	ecular rot	ation	
Examples forionisation energy13 eVOH bond5 eV H_2 bond2 eVvan der Waals linkage0.1 eV			E = I → No	h'v → 10 ⁻⁶ changinį	⁹ up to 10 ⁻³ eV g of structure!	

Super-heating effect

Interaction material-microwave

3. SAMPLE PREPARATION 3.3 MICROWAVE

syringe connector

Disadvantages

- weighted sample depends on reaction pressure
- problems by pressure spikes
- time-intensive multi-step reactions

Advantages

screw cap

- high temperatures (260°C) and pressures (60-80 bar, max 120 bar) possible
- reduced sample preparation
- contamination risk is minimised
- small consumption of chemicals
- digestion of 8 or more samples side by side
- Use of basic acids and/or acid mixtures
- temperature / pressure control

4. ATOMIC SPECTROMETRY 4.1 ATOMIC ABSORPTION, ATOMIC EMISSION

 \rightarrow Kirchhoff's radiation law: **\Lambda (absorption) = \Lambda (emission)**

4. ATOMIC SPECTROMETRY 4.2 AAS - ATOMIC ABSORPTION SPECTROMETRY

 \rightarrow The amount of light absorbed is proportional to concentration

4. ATOMIC SPECTROMETRY 4.2 AAS: CONTRAA 700, ANALYTIK JENA

- liquid (F-AAS, atomisation with flame and GF-AAS, atomisation with graphite furnace) and solid samples (only GF-AAS)
- range: mg/l (F-AAS) to ng/l (GF-AAS)

atomiser: f**lame, graphite furnace**

✓ fast and simple change of the modes

✓ Xenon continuum source (185-900 nm)

✓ high resolution Echellemonochromator

✓ CCD chip detector

source. AnalytikJena

www.leibniz-inm.de

4. ATOMIC SPECTROMETRY 4.2 AAS CONTRAA 700, ANALYTIK JENA

Automated solid-sampling

- Graphite furnace suitable for solid samples
- Simultaneously simple background correction (reference pixel, matrix spectra)
- Range: pg to fg absolutely
- Transversal heated graphite furnace

✓ Analysis of original sample
 ✓ No digestion necessary
 ✓ small sample amounts (10-500µg)
 ✓ Decreasing of analytical errors (contamination, blank, dissolution)

Atomising temperature (°C)				
element	longi-	trans-		
	tudinal	versal		
Cd	1500	1150		
Mn	2400	1600		
V	2700	2500		

4. ATOMIC SPECTROMETRY 4.3 ICP OES - OPTICAL EMISSION SPECTROMETRY WITH INDUCTIVELY COUPLED PLASMA

 \rightarrow Light emission is proportional to concentration

4. ATOMIC SPECTROMETRY 4.3 ICP OES ULTIMA 2, HORIBA

- all elements except C,H,N,O and noble gases
- liquid samples
- organic solutions, high saline solutions
- blank solution necessary
- sub µg/l to mg/l (from sub ppb to ppm)

- ✓ radial plasma
- ✓ spectral range: 120-800 nm, resolution 5 pm
- ✓ simple optical configuration (Czerny Turner)

 ✓ different kind of nebuliser (Meinhard, Miramist, Cross flow, Ringspalt) + -chamber (Scott..)

✓ Win Image

4. ATOMIC SPECTROMETRY 4.3 ICP OES ULTIMA2, HORIBA ICP OES Win Image-Navigator

Advantages:

✓ increasing of capacity

 ✓ half quantitative analysis of almost all elements within a few minutes

✓ combination of HDD and Win Image-software

combination of high dynamic range (10⁹) and fast spectra recording (2-3min, resolution 10 pm)

✓ main elements and traces in the same measuring procedure

(resolution 10 pm)

30 Claudia Fink-Straube, 28.06.2019

www.leibniz-inm.de

Advantages:

 \rightarrow isotopic distribution

 \rightarrow Single particle analysis

 \rightarrow detection of usually hard separated elements showing strong interference with matrix ions

4. ATOMIC SPECTROMETRY 4.4 HR SF ICP MS

Detector

ICF

Skimmer

Sampler

Entrance slit

✓ almost all elements of periodic table ✓ liquid samples ✓ blank necessary ✓ ng/l (ppt) down to pg/l (ppq) range ✓ multi-element analysis ✓ wide dynamic range (6-8 decades)

Neb. Spray chamber

4. ATOMIC SPECTROMETRY 4.5 EXAMPLE ICP OES

Quantitative analysis of float glasses different producers with ICP OES

HF/HNO₃ digestion, Mira Mist nebuliser, Zyklon chamber, power 1000 W, flow 12 l · min⁻¹, pressure 3 bar

wt %	SiO ₂	Na ₂ 0	K ₂ O	CaO	MgO	Al ₂ O ₃	Fe ₂ O ₃
INM	69,95	10,15	0,306	12,99	5,76	0,687	0,147
	±0,41	±0,07	±0,004	±0,009	±0,07	±0,006	±0,003
Schott	69,59	10,92	0,186	13,28	5,98	0,711	0,333
	±0,39	±0,07	±0,001	±0,05	±0,01	±0,004	±0,001
Sekurit	76,22	11,85	0,275	6,544	3,737	1,001	1,212
	±0,77	±0,10	±0,001	±0,006	±0,025	±0,014	±0,001
Pilking-	76,45	11,91	0,284	7,626	3,349	0,889	0,992
ton	±1,10	±0,10	±0,003	±0,020	±0,033	±0,005	±0,012

4. ATOMIC SPECTROMETRY 4.5 EXAMPLE GF AAS

Round-robin test for establishment of direct solid-sampling GF-AAS determination of Pb, Cd and Cu in lichen, herring gull egg and sediment

Material	Pb (mg / kg)		Cd (mg / kg)		Cu (mg / kg)	
lichen	12,52 ± 1,03	>	$0,422 \pm 0,022$	~	$5,556 \pm 0,425$	✓
herring gull egg	-	✓	-	✓	2,196 ± 0,151	✓
sediment	82,90 ± 6,44	~	$\textbf{0,534} \pm \textbf{0,025}$	✓	$64,\!54\pm5,\!56$	✓

www.leibniz-inm.de

Analysis of metal content in Arabidopsis thaliana Solid-sampling GF-AAS, Zn, Fe, Cu, N=6 weighted sample: 50-100µg

4. ATOMIC SPECTROMETRY 4.5 EXAMPLE GFAAS, ICP OES

Comparison of solid-sampling GF-AAS and ICP OES after Micro wave digestion (50 mg, 4 ml HNO₃, 2 ml H₂O₂, 30min, 1200 W), 3 plants

4. ATOMIC SPECTROMETRY4.5 EXAMPLE ICP OES

Antimicrobial coatings with nano-silver for eye drop flasks Leaching of coatings in borate- or citrate buffer solutions, determination of Ag content by **ICP OES**

borate buffer

4. ATOMIC SPECTROMETRY 4.5 EXAMPLE GFAAS, ICP OES

Analysis of silver content in cosmetics and household articles different suppliers Digestion with HNO_3 und H_2O_2 in micro wave, comparison of **GF AAS** and **ICP OES** measurements

Ag-Konzentration	GFAAS	ICP OES
Nivea men aftershave lotion silver protect	1,937 ± 0,071 mg/100ml	1,95 ± 0,3 mg/100ml
Nivea man aftersha∨e lotion	< LOD	< LOD
Nivea deo for men silver protect	39,61± 0,28 mg/100ml	60,15 ± 0,5 mg/100ml
DM Pflasterstrips antibakteriell	0,994 ± 0,023 μg/cm2	0,923 ± 0,119 μg/cm2
DM Pflasterstrips	0,013 ± 0,004 µg/cm2	0,0133 ± 0,062 µg/cm2
Rossmann Nanosilber Universaltuch	0,518 ± 0,017 μg/cm2	0,517 ± 0,133 μg/cm2
DM Spül- und Wischtuch Nanosilber	0,766 ± 0,012 μg/cm2	0,8568 ± 0,157 μg/cm2
DM Spül- und Wischtuch	0,003 ± 0,0001 µg/cm2	< LOD
lsana men deo roll-on sil∨er	25,91 ± 1,2 µg/100g	< LOD
Isana men deo roll-on	< LOD	< LOD
SOS Microsilbercreme	108,7 ± 0,76 mg/100g	109,39 ± 2,69 mg/100g

4. ATOMIC SPECTROMETRY 4.5 EXAMPLE GFAAS

Silver release of antibacterial band aid with GF-AAS

Amount of silver released from band-aid (anti-bacterial, 5 cm²) into 10 ml artificial sweat or water (24 h incubation). Total silver content was determined with ICP-OES after microwave assisted acid digestion and amounts to 4.6 μ g/cm², this equates to 368 μ g/g band-aid.

4. ATOMIC SPECTROMETRY

4.5 EXAMPLE ICP-MS

Cr-Analysis of stainless steel after digestion in sulfuric acid with ICP-MS

Medium resolution (MR) mass spectra (Resolution 4000) of Cr⁵² (83.8 % isotopic abundance) and Cr^{53} (9.5 %) in 10% H_2SO_4

0.020 6000 0.002 0.015 0.002 4000 0.010 0.001 2000 0.005 -0.001 0.000 0.000 51.88 51.90 51.92 51.94 51.96 51.98 52.00 52,88 52.90 52.92 52.94 52.96 52.98 53.00 53.02 Mass [u] Mass Jul

4. ATOMIC SPECTROMETRY 4.5 EXAMPLE ICP-MS

Dissolution of commercial Au-NPs under acidic conditions analyzed with <u>SP ICP-MS</u>

Decrease of diameter of Au-NPs depending on pH values.

Example: 50 nm, pH 5.5

4. ATOMIC SPECTROMETRY 4.5 EXAMPLE ICP-MS

Fe quantification in Mouse oocytes at trace levels, Method validation (HR-SF ICP-MS)

Isotopic interferences in HR mode

HR-mass spectra obtained for ⁵⁶Fe: standard solution in PBS-medium (*top*) and intact oocytes (*bottom*)

In vitro fertilisation of mouse oocytes

Calibration curve

5. CHROMATOGRAPHY 5.1 CHROMATOGRAPHIC SEPARATION

Chromatography: chroma-colour, graphein-write physico-chemical separation method Distribution of separated substances between stationary and mobile phase

→ distribution coefficient K describes relation between concentration of substance x in the mobile and stationary phase at thermodynamic equilibrium

5. CHROMATOGRAPHY 5.1 CLASSIFICATION

43 Claudia Fink-Straube, 28.06.2019

www.leibniz-inm.de

5.1 DIFFERENCES GAS AND LIQUID CHROMATOGRAPHY

• mobile phase gaseous, used as carrier

5. CHROMATOGRAPHY

- sample should be volatile and vaporisable without decomposing
- molar mass < 500 Dalton
- volatile solvent (normally decreasing boiling temperature as sample)
- separation by boiling
 temperature and polarity

- mobile (liquid) and stationary phases are involved in separation
- no requirement concerning volatility
- must-have: solubility in mobile phase
- no upper limit regarding to molar mass
- analysis at room temperature
- separation by polarity (Reversed Phase Chromatography) and size (Gel Permeation Chromatography)

▶ 5. CHROMATOGRAPHY

5.2 GAS CHROMATOGRAPHY WITH MASS SPECTROMETRY

GC/MS, direct injection

- soluble in organic solvents with preferably low boiling point
- sample volume 0.2 5 μl

Gasfluß

Probenaufgabe

• range pg (scan) to fg (SIM)

2

• auto sampler CTC: up to 98 samples, 6 samples for head space and SPME

Mass

capillary column (30m. 0.25mm ID; 0.25µm film)

45 Claudia Fink-Straube, 28.06.2019

5. CHROMATOGRAPHY 5.2 GC/MS

MS mode: **EI** (Electron Impact Ionization or Electron Ionization)

- \checkmark typical "strong" ionization method (70 eV), fragmenting "fingerprint"
- \checkmark comparison with MS data base (Wiley, NIST: more than 300 000 compounds)
- ✓ mass range 33-900 Dalton

ethanol as example

5. CHROMATOGRAPHY 5.2 GC/MS

INM

5. CHROMATOGRAPHY

5.2 GC/MS

Head space (HS-GC/MS)

- Analysis of volatile sample parts from solid or liquid matrices
- transfer of the gaseous sample parts into GC by gastight syringe after thermal treatment up to 150°C
- CTC Autosampler with 6 vials

SPME (HSPME-GC/MS)

- Extraction of volatiles in the HS-vial by adsorption on a polymer-coated fiber
- transfer of the fiber to GC injection port, **desorption**
- fibers: PDMS, Carbowax, Divinylbenzen

5. CHROMATOGRAPHY 5.3 LIQUID CHROMATOGRAPHY (LC)

www.leibniz-inm.de

- 1. Eluents (mobile phase)
- 2. Degasser
- 3. Quaternary Pump
- 4. Autosampler
- 5. Column oven (up to 80 °C)

 Detector DAD (100 pg / ml) RID (100 ng / ml)

5. CHROMATOGRAPHY

5.3 LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY 3000 Molar mass (Da) **API electro spray** 2000 1000 GC/MS Non polar polar

API-Electro spray (ESI)

- ✓ Ionisation with electrical field (max 4.5 kV)
- \rightarrow production of charged droplets
- ✓ following production of analyte ions by Ion evaporation
- ✓ nebuliser pneumatic supported

Must-have: Ions in solution or development of ions (e.g. decreasing of the pH in case of alkaline substances leads to protonation)

✓ after LC separation: drying, ionisation, analysing by mass/ charge and detection
 ✓ fg up to pg sensitivity, M/Z range up to 3000 Dalton

▶ 5. CHROMATOGRAPHY

5. CHROMATOGRAPHY

The larger the mass the slower the ion

Typical flight times of ions: 5-1000 µsec

 \checkmark after LC separation: drying, ionisation, analysing by mass/ charge and detection

✓ sensitivity: down to pg, M/Z range: up to 10000 Da, accuracy 0.8 ppm

MS only: maximum sensitivity

MS/MS: structure elucidation by CID spectra

Quantitative determination of volatile sol components

HS GC/MS, 15 min 85 °C and 120 ° C resp., 20 μl volume, 180 ° C, WAXplus

www.leibniz-inm.de

5.0 6.0 4'0 7.0 53 Claudia Fink-Straube, 28.06.2019

0.50-

0.25

3-methyl ethylester

Butanoic

9.0

Qualitative determination of solvents in translucent ink HS GC/MS

Thermo 15 min 35 °C, 200 ° C, 200 ° C, volume 1 ml, WAXplus

(x1,000,000) TIC -Butano 2.25 2.00-1.75-1.50-1.25-Benzene, (1-methylethyl)-1,3,5-trimethyl-1.00-Cyclobutanol 0.75-Benzaldehyde acid

^eBenzene, '

8.0

5. CHROMATOGRAPHY 5.4 EXAMPLE GC/MS

Qualitative analysis of Narcise perfume and determination of migration of coating components in Narcise GC/MS, 1:10 in MeOH, 0,2 µl, ECTM-1, ms

54 Claudia Fink-Straube, 28.06.2019

www.leibniz-inm.de

5. CHROMATOGRAPHY 5.4 EXAMPLE GC/MS

Comparison of natural and crude oils

GC/MS, 1:100 in hexane, 1 µl direct, ZB-1 guardian

5. CHROMATOGRAPHY 5.4 EXAMPLE GC

Quantitative trace analysis of alkan thiols in non-polar solvents GC/MS, 5µl direct, ZB-1HT Inferno (2min 100°C, 20K/min 360°C, 1min), MZ 56, 69, 111

5. CHROMATOGRAPHY 5.4 EXAMPLE HS-GC/MS

Thermal degradation of commercial discs

HS-GC/MS, 5min incubation time, 500 µl direct, WAX plus, (2min 100°C, 20K/min 250°C, 1min)

1-tetrahydrofuran 2-acetonitrile 3-viniloxyethanol 4-ethybenzene 5 -o-Xylene 6-isopropylbenzene 7-xylene 8-benzeneacetaldedyde 9-cyclohexanone 10-2-phenylpropene 11-benzyldehyde 12-acetophenone 13-isopropyl laurate 14-1-methoxyethylbenzoate

5. CHROMATOGRAPHY 5.4 EXAMPLE GC/MS

Quantitative analysis of alditol acetate derivates

GC: 1:100 in ethyl acetate, 2 μl direct, ZB-1701(30m, 0,25mm, 0,25μm), 200°C isotherm **MS:** SIM, 230 kV, M/Z 115, 6-35 min

5. CHROMATOGRAPHY 5.4 EXAMPLE GC/MS Screening of plant oils by HS-GC/MS

Total ion chromatograms of extra virgin and purified olive oils in comparison after 5 min in HS vial held at 30 °C, column ZB-WAX plus (left) and visual prints (right)

5. CHROMATOGRAPHY 5.4 EXAMPLE LC

Quantitative HPLC analysis of amino acids in proteins

mobile phase: ACN-MeOH-KH₂PO₄ buffer, $1ml min^{-1}$, stationary phase: Zorbax Eclipse AAA (4,6 mm x 150 mm, 5 µm), 0,5 µl volume, online-derivatization with OPA and FMOC, DAD 338nm+262nm

✓ reproducible: N=6, RSD_{ret.time}<0,3%; RSD_{peak area}<2%

5. CHROMATOGRAPHY 5.4 EXAMPLE LC/MS

LC-ESI-MS of soy lecithine (phosphatidylcholine, phospholipid)

mobile phase: MeOH-H2O, 0.3 ml·min⁻¹, stat. phase: capillary, 5 μ l

www.leibniz-inm.de

62 Claudia Fink-Straube, 28.06.2019

www.leibniz-inm.de

5. CHROMATOGRAPHY

5.4 EXAMPLE LC/MS

Quantification of nucleotides in human cells with LC-ESI-MS

LC: stationary phase: Ascentis C 18 (150 x 4.6mm, 3.5 μm), 27°C mobile phase: gradient of 10mM ammonium acetate, pH=10 and 100 % ACN, 350μl/min MS: negative mode, full scan 100-950 Da, 3500 V, dry gas flow 8 l/min, dry gas 350°C

▶ 6. QUESTIONS

- Define the terms of LOD and LOQ
- > Which kinds of errors are in analytical chemistry? Examples
- Different calibration modes, examples
- Reaction equations for digestion of samples, Rule of thumb kinetics
- Scheme of electromagnetic radiation spectrum, allocation of wavelengths and frequencies
- Advantages and disadvantages of microwave digestion
- > Difference between the terms absorption (spectra) and emission (spectra)
- > Optical path of AAS and OES analytical instrument
- > Measuring ranges, sensitivities of AAS, OES, MS in comparison
- Differences between Gas- and Liquid-Chromatography
- Different detectors in chromatography
- Assign of application examples (Atomic spectrometry, Chromatography, Mass spectrometry)

7. LITERATURE

Veronika R. Meyer: **Praxis der Hochleistungsflüssigchromatographie**, 9. Auflage, WILEY-VCH (2004)

Stavros Kromidas: **Der HPLC-Experte, Möglichkeiten und Grenzen der modernen HPLC**, Wiley-VCH (2014)

Peter J. Baugh: Gaschromatographie, Friedr.Vieweg & Sohn (1997)

Hans-Joachim Hübschmann: Handbook of GC/MS, 2. Auflage, WILEY-VCH (2009)

B. Welz: Atomabsorptionsspektrometrie, 4. Auflage, WILEY-VCH (1997)

Joachim Nölte: ICP Emissionsspektrometrie für Praktiker, WILEY-VCH (2002)

→ 05.07.19 Nanosafety (Annette Kraegeloh)

THANK YOU VERY MUCH FOR YOUR ATTENTION

Dr. Claudia Fink-Straube Chemische Analytik INM – Leibniz Institut für Neue Materialien Campus D2 2 66123 Saarbrücken (Germany) www.leibniz-inm.de