

WHY ELECTRON MICROSCOPY (EM)?

Table 1-1. Approximate sizes of some common objects and the smallest magnification M* required to distinguish them, according to Eq. (1.5).

Object	Typical diameter D	$M^* = 75 \mu m / D$
Grain of sand	$1 \text{ mm} = 1000 \mu\text{m}$	None
Human hair	150 μm	None
Red blood cell	10 µm	7.5
Bacterium	1 μm	75
Virus	20 nm	4000
DNA molecule	2 nm	40,000
Uranium atom	0.2 nm = 200 pm	400,000
Physical Principles of Electron Microscopy, I	R.F. Egerton, Springer, 2005	
5_NanoBioMaterials II, June 7 th , 2019		Indra.Dahmke@leibniz-inm.de

V (keV)	λ (nm)	v/c]
10	0.012	0.195	
50	0.0055	0.414	
100	0.0039	0.548	
1000	0.0012	0.941	
Excursus velocity (v) vs. v. The rapidity (θ) is an alter as $\theta = artanh (v/c)$. approximates v/c.	elocity of light (c): native measure for relativi For non-relativistic velociti	stic velocity and defined es the rapidity	

