Nachtrag: Sterility and Sterilization of Materials

Sterile: free of living microorganisms, including spores and other active biological agents (prions, viruses)

Manufacturing: sterile process or terminal sterilization

Sterilization (10⁻⁶) Disinfection (10⁻⁵)

- Heat
- Filtration
- Radiation
- Chemicals

1

Heat

moist heat sterilization (autoclaving) 121°C, 20 min or 134°C, 18 min

dry heat sterilization 160-180°C, 30-120 min

[Systec]

Sterile Filtration

passage through sterile filters (0.2 μm) into a sterile container for heat labile substances and suspensions

Compatibility of filter materials with solvents and contained substances

Potential effects: Stripping off adsorbed substances Loss of materials/substances by retention/adsorption

Not suitable for highly viscous solutions

Gamma Irradiation

Ionizing radiation emitted by radioisotopes, e.g. Cobalt-60

Electromagnetic radiation

Potential effects: Formation of reactive free radicals/ cascades of free radical reactions Formation of peroxides Crosslinking or chain scission

[BGS]

Chemical Sterilization

Ethylene oxide (C_2H_4O), epoxide

toxic compound

(mutagen: changing the genetic material, DNA

clastogen: induces breakage of chromosomes)

Potential effects: Alkylation of compounds toxic residues

[pfm]

Classification of Medical Products by Type of Contact)

In contact with body surfaces

- Intact skin (e.g. electrodes, external prostheses, bandages)
- Mucous membranes (e.g. contact lenses, dental prostheses)
- Harmed or damaged skin (e.g. wound dressing)

From the outside in contact with the inner body

- vasculature, indirect (e.g. transfusion devices, tubing)
- Tissue, bones, dentin (e.g. dental cement, fillings)
- Circulating blood (e.g. intravascular catheter, dialysers)

Implantable

- tissue, bone (e.g. nails, plates, prostheses, pacemakers)
- Blood (e.g. heart valves, stents)

Types of Contact Duration and Biompatibility

- Short-term (up to 24 h)
- Prolonged (24 h 30 days)
- Permanent (> 30 days)
- Systemic Toxicity (by release of constituents into the body) acute (within 24 h), subacute (up to 28 days) subchronic (10 % of the life span), chronic effects (> 10% of the life span)
- Skin, eye or mucous membrane irritation (e.g. inflammation)
- Hemolysis (lysis of red blood cells)
- Thrombogenicity (potential for clot formation)
- Sensitization (including an immune response)
- Genotoxicity (DNA destruction, mutation, chromosomal aberration)
- Cancerogenity (tumorigenic potential)
- Reproductive toxicity (e.g. embryonic development)

Nanosafety July 12, 2019

Dr. Annette Kraegeloh INM - Leibniz Institute for New Materials

Nanomaterials Definition

"Nanomaterial" means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm - 100 nm.

In specific cases and where warranted by concerns for the environment, health, safety or competitiveness the number size distribution threshold of 50 % may be replaced by a threshold between 1 and 50 %.

Fullerenes, graphene flakes and single wall carbon nanotubes with one or more external dimensions below 1 nm should be considered as nanomaterials.

[COMMISSION RECOMMENDATION on the definition of nanomaterial, 2011]

a specific surface per unit volume of greater than 60 m²/cm³

Nanomaterial Types

hydrothermal reactor [INM]

Manufactured

Incidental

www.inm-gmbh.de

Nanomaterials Characterization

measurement methods:

Electron Microscopy,

Dynamic Light Scattering,

Centrifugal Liquid Sedimentation,

Field Flow Fractionation,

Particle Tracking Analysis,

Atomic Force Microscopy,

BET (N₂ adsorption by Brunauer, Emmet, Teller)

[JRC reference report 2012]

Nanomaterial or Not?

TiO₂:

E171:

110 nm (30-400 nm) (SEM) 36% < 100 nm (TEM) 150 nm (0,75% BSA, DLS) **P25:** 30-40 nm (TEM), 21 nm (SEM)

136 nm, 30% of the particles < 100 nm BET surface: 50 m²/g

[Weir 2012; Bundschuh 2012; NanoCare Final Report 2009]

Biological Nanostructures (Inorganic)

[Klaus et al., 1999]

horse tail: SiO₂ structures [Curry und Perry, 2007]

diatoms: SiO₂ structures [INM]

[Schüler and Frankel, 1999]

Biological Nanostructures (Organic)

Nanoparticles

Engineered

Nanofibres

Nanotubes

Surfaces

□ Nanostructured

[Veith et al., 2008]

Biological

Serumalbumin 8 x 3 nm, LDL 20 nm

[Ferrer et al., 2001]

[Mann, 2008; Röcker et al., 2009]

Cytoplasmic membrane 5 nm [Mann, 2008]

Size Dependent Properties of Nanoobjects 1

High Surface to Volume Ratio

Luminescence

CdSe Quantum Dots [Niemeyer, 2005]

Size Dependent Properties of Nanoobjects 2

[Auffan et al., 2009]

Safety Aspects and Nanotoxicology

Production and Manufacturing

Usage by Consumers

Biomedical Applications

Environmental Issues

www.inm-gmbh.de

Potential Routes of Entry into the Human Body

[Oberdörster et al., 2005]

Translocation Routes of Nanoparticles within the Body

Tissue Distribution of Gold Nanoparticles after Oral Uptake

	4 nm	10 nm	28 nm	58 nm
Blood	6.83 ± 0.69	0.77 ± 0.07	0.47 ± 0.20	-0.09 ± 0.10
Brain	4.67 ± 0.26	2.06 ± 0.78	0.70 ± 0.20	2.40 ± 1.30
Lung	32.42 ± 9.37	8.55 ± 4.90	0.80 ± 0.35	-1.43 ± 0.37
Heart	15.05 ± 2.05	7.27 ± 3.25	1.51 ± 0.78	-2.37 ± 0.86
Kidney	75.40 ± 10.65	17.36 ± 1.51	6.19 ± 1.51	1.46 ± 0.33
Spleen	20.25 ± 2.27	7.01 ± 4.65	13.74 ± 13.48	-0.65 ± 1.20
Liver	21.27 ± 3.62	2.78 ± 0.30	1.16 ± 0.03	0.37 ± 0.16
S. intestine	38.83 ± 9.16	13.89 ± 3.11	214.95 ± 150.49	17.59 ± 2.53
Stomach	22.44 ± 4.66	19.99 ± 7.72	37.92 ± 30.42	19.56 ± 9.87

Table 1. Colloidal Gold Distribution (PPB, $ng_{Au}/g_{tissue} \pm S.E.$) at the Organ/Tissue Level of BALB/c Mice^a

20 (Hillyer et al., 2001)

Size Dependent Distribution of Particles in the Respiratory Tract

www.inm-gmbh.de

21

Deposition of Nanoparticles after Inhalation

[NanoCare Report, 2009]

Deposition and Relocation of Nanoobjects in the Lung

Endocytosis of Nanoparticles

Frustrated Phagocytosis of Fibres Contributes to Toxicity

phagocytosis

frustrated phagocytosis inflammation

Biologically Relevant Properties of Nanoobjects

Dr. Annette Kraegeloh – 12 July 2019

www.inm-gmbh.de

Potential Cellular Targets of Nanoobjects

Cellular Effects Induced by Nanoobjects

28

Effects of Nanoparticles on the Integrity of Whole Cells

(Shi et al., 2012; Peuschel and Ruckelshausen 2015)

In vivo Effects of Nanoobjects

Protein Adsorption to Biomaterials

Protein adsorption is dependent on:

- protein concentration
- rate of diffusion
- affinity

Vroman Effect

Protein Conformational Changes upon Adsorption on Surfaces

Protein properties affecting adsorption:

- hydrophilicity/ hydrophobicity
- size
- charge
- structural stability

Material Surface Properties Affecting Protein Adsorption

Surface Property	Description
hydrophilicity/ hydrophobicity	hydrophobic surfaces tend to adsorb more proteins
charge	opposite charges between surface and protein promote protein adsorption
topography	increased roughness provide increased surface area
chemistry	chemical composition dictates the types of bonds between protein and material surface

Questions

□ What are nanomaterials, how are they defined? What are natural, incidental, manufactured nanomaterials?

- □ How are size, surface and volume of nanoobjects interrelated?
- □ What are important biologically relevant properties of nanoobjects, apart from size?
- □ what are important entry routes of nanoobjects into the body?
- Describe the inhalative pathway of nanoobjects!
- □ How do nanoobjects enter cells? What is frustrated phagocytosis?
- □ What effects do nanoobjects have on a cellular level?
- How do proteins interact with material surfaces?
- □ Which techniques are used to sterilise biomaterials?

Literature

Books:

□ Fadeel et al. (2012) Adverse Effects of Engineered Nanomaterials

Articles:

□ Krug and Wick (2011) Nanotoxicology an interdisciplinary challenge, Angewandte Chemie Int. 50: 1260

□ Krug (2014) Nanotoxikologie, Angew. Chemie 126: 12502

Written Exam: July 19, 2019

2nd try: September 20, 2019 (10-12) HS A, D2.2