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1.1 Significance of light
How we perceive the world

Vision – our most important tool for perceiving our surroundings
evolved several hundred million years ago

vital not only for humans

high resolution imaging perception

Far field resolution: ca. 1 arc minute

Near field resolution: ca. 100 µm

long range (millions of light years)

Phrases (german and english):
“Sich ein Bild machen”

“Ein Bild sagt mehr als tausend Worte”

“Seeing is believing”
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1.1 Significance of light
The eye – a biological optical system
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1.1 Significance of light
Expanding our capabilities of perception

Optical instruments for a better 

understanding of the world we 

live in

Telescopes help us to understand 
our universeMicroscopes let us see a microscale 

world 
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1.1 Significance of light
Technical applications of optics
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Precision laser 
machining

biomedical imaging and 
therapy

Blu-ray disc (25GB)

CD/DVD

telephone
data
internet

Laser cutting

Laser writing on 
human hair Photolithography

Corrective laser eye surgery 3-D laser imaging of cell
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1.2 What is light?
Historical Controversy

Particles Waves
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1.2 What is light?
Comparison of theories

Particles (classical): 
explains straight line propagation

explains reflection (elastic bouncing)

has difficulties with refraction

does not explain diffraction & related phenomena

Waves (classical):
less intuitive

successfully explains all phenomena of classical optics

Quantum mechanics:
answer depends on how the question is asked

unambiguously particle-like (photons): 

quantization of energy hf and momentum 
ℎ

2𝜋
𝑘
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1.3 Wave theory
The wave equation (1)

Wave propagation 
= specific mode of evolution of a quantity depending on position and time 

(“field”, “amplitude”)

Examples:
Height of water surface on the sea

Pressure (sound = acoustic waves)

Electric field 𝐸 and magnetic field 𝐻 (light)

Wave equation
Description of wave propagation for a generalized field A:

𝜕2𝐴

𝜕𝑥2
+
𝜕2𝐴

𝜕𝑦2
+
𝜕2𝐴

𝜕𝑧2
=
1

𝑣2
𝜕2𝐴

𝜕𝑡2

For electromagnetic waves: a consequence of Maxwell‘s equations
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1.3 Wave theory
The wave equation (2)

Simplest case – only one spatial dimension :
𝜕2𝐴

𝜕𝑥2
=

1

𝑣2
𝜕2𝐴

𝜕𝑡2

General solutions: 𝐴 𝑥, 𝑡 = 𝐴(𝑥 − 𝑣 ∙ 𝑡) or    𝐴 𝑥, 𝑡 = 𝐴(𝑥 + 𝑣 ∙ 𝑡)

(𝑣 = velocity of propagation)

at t = 0:

later time t>0:

A

A

x

x

x=+vtx=-vt

A(x+vt): running to the left A(x-vt): running to the right
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1.3 Wave theory
Harmonic waves (one-dimensional)

Harmonic (sine/cosine) dependency on position and time:

Amplitude of a harmonic wave propagating in +x direction: 

𝐴 𝑥, 𝑡 = 𝐴0 ∙ 𝑐𝑜𝑠
2𝜋

𝜆
𝑥 − 𝑣 ∙ 𝑡 = 𝐴0 ∙ 𝑐𝑜𝑠 𝑘 ∙ 𝑥 − 𝜔 ∙ 𝑡 = 𝐴0 ∙ cos(𝜑)

Where

 = wavelength (distance between two repeat units)

𝜔 = 2𝜋𝑓 =
2𝜋𝑣

𝜆
= angular frequency (2π times the oscillation frequency 𝑓)

𝑘 =
2𝜋

𝜆
= wave number = number of repeat units on 2π length units

𝜑 = 𝑘 ∙ 𝑥 − 𝜔 ∙ 𝑡 = phase of the harmonic function
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1.3 Wave theory
Generalizations

Plane waves in 3D space: 

Wave number k → wave vector 𝑘

Points along direction of propagation

Length = 2π/wavelength*

Wave fronts (planes of constant phase) 

are perpendicular to 𝑘

*true for individual vector components as well

Using complex numbers: exp 𝑖 ∙ 𝜑 = cos 𝜑 + 𝑖 ∙ sin(𝜑)

𝐴 𝑥, 𝑡 = 𝑅𝑒 𝐴0 ∙ exp 𝑖 ∙ (𝑘 ∙  𝑥 − 𝜔 ∙ 𝑡) = 𝑅𝑒 𝐴0 ∙ exp(𝑖 ∙ 𝜑)

Why: Adding phases is simpler, generalized formalism covers more cases

kx

k y
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Electric field 𝐸

Defined as the force  𝐹 acting on a test charge 𝑞, scaled by the 

magnitude of that test charge:

 𝐹 = 𝑞 ∙ 𝐸

The electric field has a strength and a direction → vector

It depends on the location in space (coordinate  vector  𝑥) → field

(and, generally, on time 𝑡 as well):

𝐸 = 𝐸(  𝑥, 𝑡)

Magnetic field 𝐻 (or 𝐵 = 𝜇 ∙ 𝜇0 ∙ 𝐻)
Can be defined similarly (difficulty: there are no “magnetic charges”)

Usually not interesting for optics: magnetic permeability 𝜇 is 1 for 

almost all materials at optical frequencies

1.4 Light as an electromagnetic wave

Electric and magnetic fields
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Density 𝑃 of induced dipoles (dielectric polarization) is proportional to the 

electric field: 𝑃 = 𝜒 ∙ 𝐸

χ (the dielectric susceptibility) is a real number if the material’s reaction to 

the electric field is instantaneous

χ has a (frequency dependent) imaginary component if the reaction lags 

behind ( absorption)

Important quantity: (relative) dielectric permittivity 𝜀 = 𝜒 + 1

1.4 Light as an electromagnetic wave

Electric field and matter

+

–
–

––
+

–
–

––

Atom without electric field: 

symmetric charge distribution 

nucleus
electrons

with electric field: 

induced dipole

𝐸
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Wave equation for electric field (from Maxwell‘s equations):

𝜕2𝐸

𝜕𝑥2
+
𝜕2𝐸

𝜕𝑦2
+
𝜕2𝐸

𝜕𝑧2
= 𝜀𝜀0𝜇𝜇0

𝜕2𝐸

𝜕𝑡2
=
𝑛2

𝑐2
𝜕2𝐸

𝜕𝑡2

where

𝒄 =
𝟏

𝜺𝟎∙𝝁𝟎
(= 299 792 458 m/s)

speed of light (in vacuum)
(𝜀0, 𝜇0 = vacuum permittivity / permeability)

𝒏 = 𝜺 ∙ 𝝁 = refractive index (of a material)
(𝜀, 𝜇 = relative permittivity / permeability for a given material)

→ A material slows down light by a factor of n

Harmonic waves:  and 𝑘 depend on the material: 𝜆 
𝜆

𝑛
, 𝑘  𝑛 ∙ 𝑘

1.4 Light as an electromagnetic wave

Electromagnetic waves
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1.4 Light as an electromagnetic wave
Harmonic electromagnetic waves in isotropic media

Relation between wave vector and field vectors

Electric field 𝐸 and magnetic field 𝐻 are

perpendicular to each other and to 𝑘

Amplitudes are linked: 𝐸 =
𝜇𝜇0

𝜀𝜀0
∙ 𝐻

Polarization:

Linear polarization: 𝐸 and 𝐻 oscillate in 

orthogonal planes

Circular / elliptical polarization is also possible

Intensity:

Intensity I = power per unit area perpendicular to 𝑘

𝐼 = 𝐸 × 𝐻 : proportional to the squared amplitude

Loo Kang Wee (via Wikipedia)
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1.4 Light as an electromagnetic wave
Light in the electromagnetic spectrum

Visible light: ~ 380 – 780 nm 
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Continuity conditions (required by Maxwell‘s equations)

Tangential components of 𝐸 and 𝐻 are continuous, i.e., the same on 

both sides of the interface

Perpendicular components of 𝐷 = ε𝜀0𝐸 and 𝐵 = 𝜇𝜇0𝐻 are continuous

Consequence (a): Snell’s law of refraction
Continuity conditions are true at 

every point of the interface

→ tangential component of 𝑘 is continuous

Length of 𝑘 changes according to different

refractive index

→ perpendicular component must adapt

(some trigonometry) → 𝑛1 sin 𝛼1 = 𝑛2 sin 𝛼2

1.4 Light as an electromagnetic wave
Interfaces between different materials 

α2

α1

𝑘1

𝑘2
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1.4 Light as an electromagnetic wave
Interfaces between different materials 

Consequence of continuity conditions (b): Fresnel coefficients
Three waves to match all conditions : incident, transmitted, reflected

Matching conditions depend on polarization

Amplitude reflection and transmission coefficients:

𝑟𝑠 =
𝑛1 cos 𝛼1−𝑛2 cos 𝛼2

𝑛1 cos 𝛼1+𝑛2 cos 𝛼2
𝑟𝑝 =

𝑛1 cos 𝛼2−𝑛2 cos 𝛼1

𝑛1 cos 𝛼2+𝑛2 cos 𝛼1

𝑡𝑠 =
2𝑛1 cos 𝛼1

𝑛1 cos 𝛼1+𝑛2 cos 𝛼2
𝑡𝑝 =

2𝑛1 cos 𝛼1

𝑛1 cos 𝛼2+𝑛2 cos 𝛼1

α1

α1

α2

n2

n1
α1

α1

α2

n2

n1

s polarization („senkrecht“) p polarization („parallel“)

plane of incidence is 
spanned by 3 wave 
vectors

polarization is defined 

by 𝐸 field with 
respect to the plane 
of incidence 

reflected: 
𝐸𝑟 = 𝑟 ∙ 𝐸𝑖

transmitted:
𝐸𝑡 = 𝑡 ∙ 𝐸𝑖
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1.4 Light as an electromagnetic wave
Interference

Superposition of waves → amplitudes add up

Constructive interference:
same direction / sign

𝐼 ∝ 𝐸1 + 𝐸2
2 = 𝐸1

2 + 𝐸2
2 + 2𝐸1𝐸2

Intensity > sum of separate intensities

Destructive interference:
opposite direction / sign

𝐼 ∝ 𝐸1 − 𝐸2
2 = 𝐸1

2 + 𝐸2
2 − 2𝐸1𝐸2

Intensity < sum of separate intensities

Required: coherence = constant phase relationship
spatial: different points of a light source are correlated

temporal: sufficiently stable frequency for paths of different length

I
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1.4 Light as an electromagnetic wave
Huygens’ principle

Not everything is a plane wave

Basic idea: Each point in space is the origin of a spherical wave correlated with the 

wave field. All spherical waves interfere with each other.

Undisturbed case: The result is the wave field as it was 

Disturbed case: Basis for scalar diffraction theory

(Perturbation: any inhomogeneity in the material, i.e. the spatial 

distribution of ε)

Example: Young’s

double-slit experiment

→ ultimate proof for wave

character of light

I
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2.1 Optical effects of periodic microstructures
Gratings and lattices

Description of periodic structures in space

Grating: 2D (sheet-like) structure, periodic within the sheet plane

Lattice: 3D (volume) structure, periodic in all three dimensions

Simplest case: grating of parallel lines

Just like an optical wave, but static:

𝐹 𝒙 = 𝐴 ∙ cos 𝐾 ∙  𝑥

𝐾 = grating vector (or lattice vector)

F can be any quantity relevant to optics:

refractive index

absorption

height of a surface (2D gratings only)

10 µm

Diffraction grating of a monochromator
(microscope image)
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2.1 Optical effects of periodic microstructures
Grating diffraction

Interaction of a light wave with a grating

Incident light:

𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡  𝑥, 𝑡 = 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
0 𝑐𝑜𝑠 𝑘 ∙  𝑥 − 𝜔𝑡

𝑘 is not parallel to the grating plane 

Result:
Attenuation of incident wave

Additional plane waves:

𝐸± 𝑥, 𝑡 = 𝐸±
0 cos 𝑘± ∙  𝑥 + 𝛿± − 𝜔𝑡

tangential component of 𝑘± is obtained

by adding / subtracting 𝐾

perpendicular component of 𝑘± adjusts to maintain correct length

𝑘
𝐾

𝑘−

𝑘+
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2.1 Optical effects of periodic microstructures
Diffraction – general case

General description of a periodic structure:

Superposition of harmonic modulations with different K (Fourier representation)

Condition for diffraction: There must be a lattice vector 𝐾 present with

𝑘𝑑𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑒𝑑 = 𝑘𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 ± 𝐾 (Bragg condition)

Additionally, the length of 𝑘 must remain constant (conservation of energy).

Diffraction only for special combinations of incident and diffracted wave 
vectors

Basis for crystal structure analysis by X-ray diffraction

Special case for thin gratings: perpendicular component of 𝑘± adjusts to
maintain correct length
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2.1 Optical effects of periodic microstructures
Examples

CD / DVD

natural opal

hexagonal array of holes in a metal film
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2.2 Non-periodic microstructures
From diffraction to scattering

Loss of strict periodicity in the structure

→ Fourier representation turns into a continuous spectrum

→ Loss of selectivity in the diffraction condition

Partial loss of periodicity:

Still some selectivity

Preferences for some wavelengths: structural colors

Preferences for some angles

Complete loss of periodicity / complete randomness:

Uniform scattering

Can be interpreted as a “random walk” of photons
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2.2 Non-periodic microstructures
Examples

Partially periodic Completely random
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2.3 Periodic nanostructures
Metamaterials

Transition from “micro” to “nano”: 

Semi-official: feature size < 100 nm

Convenient for optics: periodicity < /2 (roughly equivalent for visible light)

Why? 

Periodicity < /2 means K > 2k

No chance to maintain correct length of the diffracted wave vector, even 
with a full reversal of the direction of propagation

Result: periodic structure becomes invisible!

But: Properties of the structural units still remain active

Anisotropy & polarization

Unusual dispersion relations (wavelength dependence of refractive index)
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2.3 Periodic nanostructures
Metamaterials - Examples

Moth eye: one of few examples for optical wavelengths

Many proof of principle demonstrations with microwaves

Cloaking devices

Negative refractive index

…

Metamaterial cloak (Source: K. Kim, Yonsei University; via Welt der Physik) 
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3.1 Vertically structured surfaces
Modifying reflectivity

Surface reflection from transparent materials

Reason: Matching electromagnetic field 
amplitudes on both sides of the surface 
(Fresnel reflection)

Amplitude reflection coefficient:

𝑟 =
𝑛1−𝑛2

𝑛1+𝑛2

@ normal incidence (angle dependent)

(Intensity reflection coefficient is r2!)

Task: Either decrease or increase reflectivity

incident reflected

transmitted

n1

n2
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3.1 Vertically structured surfaces
Why antireflective surfaces?

Maximize contrast:

Maximize light throughput:
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3.1 Vertically structured surfaces
Approaches for antireflective surfaces (2)

Gradient index (GRIN) surfaces

True GRIN is difficult, approximation by a series of layers with small refractive 
index differences is possible.

Additional difficulty: Refractive index of air is 1.0, but the lowest refractive index 
of a solid material is 1.38 (MgF2); porous silica can go down to 1.22, but has other 
issues.

n1

n2

Not competitive in practice
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3.1 Vertically structured surfaces
Approaches for antireflective surfaces (2)

Single interference layer

Destructive interference of reflected partial waves

Layer parameters for optimum antireflective effect:

refractive index = 𝑛1𝑛2

thickness = /4

Technically used for low cost applications400 500 600 700 800
0

1

2

3

4

5

 

 

R
e

fl
e

c
ta

n
c
e

 [
%

]

Wavelength [nm]

uncoated

MgF
2

ideal
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3.1 Vertically structured surfaces
Approaches for antireflective surfaces (3)

Multiple interference layers

Increased bandwidth

Various designs possible (example: 3 layers)

Still, generally: thickness of each layer = /4

substrate

400 500 600 700 800
0

1

2

3

4

5

 

 

R
e

fl
e

c
ta

n
c
e

 [
%

]

Wavelength [nm]

uncoated

triple layer

intermediate refractive index

high refractive index

low refractive index

air
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3.1 Vertically structured surfaces
Approaches for antireflective surfaces (4)

Moth eye structures

Metamaterial to achieve

low average refractive index

some GRIN effect

300 nm

Rather limited technical application

sensitive to soiling and wear
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3.1 Vertically structured surfaces
Materials for interference layer systems

General requirements for layer materials:

Refractive index: from very low to very high

Transmission range may vary depending on the application

Resistance to environmental conditions depending on the application

Typical materials:

MgF2 (n=1.38, soft, broad transmission range)

Amorphous silica (SiO2; n= 1.46, hard, UV transparent)

Porous silica (n down to 1.22, very soft)

TiO2 (n = 2.4 to >3 for dense material; hard; UV cutoff below 400 nm)

ZrO2 (n = 2.13; hard; transparent for near UV)
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3.1 Vertically structured surfaces
How to make interference layer systems

1. Gas phase deposition

Physical vapor deposition

Chemical vapor deposition

Features:

High quality coatings

Suitable for small substrates

High equipment cost
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3.1 Vertically structured surfaces
How to make interference layer systems

2. Sol-Gel and related methods

Wet chemical synthesis based on hydrolysis and condensation reactions 
starting from suitable precursors 

Depending on synthesis route: nanoparticles or amorphous network 
dispersed in organic solvent

May be modified with organic cross-linkers for low-temperature stability

Various coating methods: Spin coating, dip coating, continuous roll-to-roll 
processes 

UV and / or thermal curing

Si

OR

RO OR

OR

H2O+ Si OH ROH+ Si OH + SiHO Si O Si H2O+

Hydrolysis Condensation
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3.1 Vertically structured surfaces
Wet coated interference layers

Dip coating for rigid substrates

Roll-to-roll coating line
Coated PET foil
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3.2 Horizontally structured surfaces
Gratings, holograms and moth eyes

Origination methods for nano-/microstructured surfaces 

Self assembly of nano-/microparticles

Specific etching methods 

Direct writing (laser, electron beam) → high resolution, but very slow

Holographic writing:

→ non-deterministic

mirror

mirror

beam splitter

laser beam

substrate
coated with
photoresist

two beam interference
gratings can be stitched (dot matrix)

mirror

3D object

beam splitter

laser beam

substrate
coated with
photoresist

classical holography
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3.2 Horizontally structured surfaces
From master structure to mass production

Origination →  Master structure

Tool for embossing

At least one molding step
for mass production typically several 
molding and electroforming steps combined



42 www.leibniz-inm.deRogin / Oliveira, Saarbrücken 2018

3.2 Horizontally structured surfaces
Replication techniques

Hot embossing

limited to thermoplastic polymers

needs to cool while in contact with the tool
→ slow process

Reactive casting

UV curing through the substrate foil
(needs to be transparent) or through
a transparent tool (silicone)

well-established process, fast

Embossing into a thixotropic resin (INM approach)

shaping with high shear rate, 
but no relaxation afterwards

curing after removing the tool

fast alternative for non-transparent substrates
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4. Nanocomposites
Nanoparticles within a matrix

Goal: use nanoparticles to modify the properties of a polymer 
material …

Change the refractive index

Modify the dispersion curve

Increase hardness / wear resistance

Add electrical functionalities

…

… without sacrificing transparency!

Challenge: Periodic structures may become invisible with feature sizes below /4 
(half period), but inhomogeneities in random distributions of particles are much 
larger than the particles themselves → Particles need to be really small!
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4. Nanocomposites
Importance of particle size

Transparency of randomly distributed particles:

I/I0 = Transmission

λ = Wavelength

d    = Particle diameter

np = Refractive index particles

nm = Refractive index matrix

c    = Particle concentration

L    = Thickness bulk

Notes: 1. Applies also to nanoporous materials

2. Good dispersion (avoiding agglomeration) is equally important



45 www.leibniz-inm.deRogin / Oliveira, Saarbrücken 2018

4. Nanocomposites
An example of a nanocomposite for microstructures

Target
Development of Light Management Foils (LMF)

Enhancement of brightness and contrast, 

reduced viewing angle dependence for LCD

Better brightness and contrast, lower sensitivity 

to ambient light for projection screens

Methods
Photosensitive gradient index material based on 

cross-linkable nanoparticles in a gel-like matrix 

Irradiation of this material through a mask 

produces a columnar microstructure with angle-

dependent scattering properties

Continuous roll-to-roll processes for coating, 

mask lamination and irradiation

Diffusion mechanism of 
polymerisable nanoparticles 

Tilted columnar domains of 
higher refractive index in 
cured light management 

material
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4. Nanocomposites
Light management foils

Results
50 µm thick films with pronounced angle-dependent scattering

High haze (>94 %) for light incident from preferred direction

Significantly lower haze for other directions

LMF as diffuser in LCDs: 

approx. 20 % higher brightness and contrast

LMF on mirror delivers even greater 

improvement

Applications
Diffusers for LCD panels

Projection screens

Lighting
Projection screen

LMF on mirror
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Summary of most important topics

Theory
What is light

Formalism for describing electromagnetic waves 

Interaction of light with materials structured on microscopic / 

submicroscopic scale 

Application & technology
Antireflective surfaces

Microstructured surfaces

Nanocomposites
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