

OPTICAL MATERIALS

Dr. Peter Rogin, Dr. Peter W. de Oliveira Saarbrücken, 2017

CONTENTS

1. Introduction

- 1.1 Significance of light
- 1.2 What is light
- 1.3 Wave theory
- 1.4 Light as an electromagnetic wave

2. Microstructures and nanostructures

- 2.1 Optical effects of periodic microstructures
- 2.2 Non-periodic microstructures
- 2.3 Periodic nanostructures

3. Structured surfaces

- 3.1 Vertically structured surfaces
- 3.2 Horizontally structured surfaces
- 4. Nanocomposite materials

Vision – our most important tool for perceiving our surroundings

- evolved several hundred million years ago
- vital not only for humans
- high resolution imaging perception
 - Far field resolution: ca. 1 arc minute
 - Near field resolution: ca. 100 μm
- Iong range (millions of light years)

Phrases (german and english):

- "Sich ein Bild machen"
- "Ein Bild sagt mehr als tausend Worte"
- "Seeing is believing"

1.1 Significance of light Expanding our capabilities of perception

Optical instruments for a better understanding of the world we live in

Telescopes help us to understand our universe

Rogin / Oliveira, Saarbrücken 2018

6

3-D laser imaging of cell www.leibniz-inm.de

1.2 What is light? Comparison of theories

Particles (classical):

- explains straight line propagation
- explains reflection (elastic bouncing)
- has difficulties with refraction
- does not explain diffraction & related phenomena

Waves (classical):

- less intuitive
- successfully explains all phenomena of classical optics

Quantum mechanics:

- answer depends on how the question is asked
- unambiguously particle-like (photons):

quantization of energy hf and momentum $\frac{h}{2\pi}k$

1.3 Wave theory The wave equation (1)

Wave propagation

= specific mode of evolution of a quantity depending on position and time

("field", "amplitude")

Examples:

- Height of water surface on the sea
- Pressure (sound = acoustic waves)
- Electric field \vec{E} and magnetic field \vec{H} (light)

Wave equation

Description of wave propagation for a generalized field A:

$$\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} + \frac{\partial^2 A}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 A}{\partial t^2}$$

For electromagnetic waves: a consequence of Maxwell's equations

 1.3 Wave theory The wave equation (2)

Simplest case – only one spatial dimension :

$$\frac{\partial^2 A}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 A}{\partial t^2}$$

~? .

General solutions:

 $A(x,t) = A(x - v \cdot t)$ or $A(x,t) = A(x + v \cdot t)$ (v = velocity of propagation)

1.3 Wave theory Harmonic waves (one-dimensional)

Harmonic (sine/cosine) dependency on position and time:

Amplitude of a harmonic wave propagating in +x direction:

$$A(x,t) = A_0 \cdot \cos\left[\frac{2\pi}{\lambda}(x-\nu \cdot t)\right] = A_0 \cdot \cos(k \cdot x - \omega \cdot t) = A_0 \cdot \cos(\varphi)$$

Where

 $\lambda = wavelength (distance between two repeat units)$

ω = 2πf = ^{2πν}/_λ = angular frequency (2π times the oscillation frequency f)
 k = ^{2π}/_λ = wave number = number of repeat units on 2π length units
 φ = k · x - ω · t = phase of the harmonic function

1.3 Wave theory Generalizations

Plane waves in 3D space:

Wave number $k \rightarrow$ wave vector \vec{k}

- Points along direction of propagation
- Length = 2π /wavelength*
- Wave fronts (planes of constant phase) are perpendicular to \dot{k}

*true for individual vector components as well

Using complex numbers: $\exp(i \cdot \varphi) = \cos(\varphi) + i \cdot \sin(\varphi)$ $A(x,t) = Re\left[A_0 \cdot \exp\left\{i \cdot (\vec{k} \cdot \vec{x} - \omega \cdot t)\right\}\right] = Re[A_0 \cdot \exp(i \cdot \varphi)]$

Why: Adding phases is simpler, generalized formalism covers more cases

1.4 Light as an electromagnetic wave Electric and magnetic fields

Electric field \vec{E}

• Defined as the force \vec{F} acting on a test charge q, scaled by the magnitude of that test charge:

$$\vec{F} = q \cdot \vec{E}$$

- The electric field has a strength and a direction \rightarrow **vector**
- It depends on the location in space (coordinate vector \vec{x}) \rightarrow field (and, generally, on time t as well):

 $\vec{E} = \vec{E}(\vec{x},t)$

Magnetic field \vec{H} (or $\vec{B} = \mu \cdot \mu_0 \cdot \vec{H}$)

- Can be defined similarly (difficulty: there are no "magnetic charges")
- Usually not interesting for optics: magnetic permeability μ is 1 for almost all materials at optical frequencies

- Density \overrightarrow{P} of induced dipoles (dielectric polarization) is proportional to the electric field: $\overrightarrow{P} = \chi \cdot \overrightarrow{E}$
- χ (the dielectric susceptibility) is a real number if the material's reaction to the electric field is instantaneous
- χ has a (frequency dependent) imaginary component if the reaction lags behind (\rightarrow absorption)
- Important quantity: (relative) dielectric permittivity $\varepsilon = \chi + 1$

1.4 Light as an electromagnetic wave Electromagnetic waves

Wave equation for electric field (from Maxwell's equations):

$$\frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2} = \varepsilon \varepsilon_0 \mu \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{n^2}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$$

where

- $c = \sqrt{\frac{1}{\varepsilon_0 \cdot \mu_0}}$ (= 299 792 458 m/s) speed of light (in vacuum) (ε_0, μ_0 = vacuum permittivity / permeability)
- $n = \sqrt{\varepsilon \cdot \mu}$ = refractive index (of a material) (ε, μ = relative permittivity / permeability for a given material)
- \rightarrow A material slows down light by a factor of n

Harmonic waves: λ and \vec{k} depend on the material: $\lambda \rightarrow \frac{\lambda}{n}$, $\vec{k} \rightarrow n \cdot \vec{k}$

1.4 Light as an electromagnetic wave Harmonic electromagnetic waves in isotropic media

Relation between wave vector and field vectors

- Electric field \vec{E} and magnetic field \vec{H} are perpendicular to each other and to \vec{k}
- Amplitudes are linked: $\|\vec{E}\| = \sqrt{\frac{\mu\mu_0}{\varepsilon\varepsilon_0}} \cdot \|\vec{H}\|$

Polarization:

- Linear polarization: \vec{E} and \vec{H} oscillate in orthogonal planes
- Circular / elliptical polarization is also possible

Intensity:

- Intensity *I* = power per unit area perpendicular to \vec{k}
- $I = \|\vec{E} \times \vec{H}\|$: proportional to the squared amplitude

Loo Kang Wee (via Wikipedia)

1.4 Light as an electromagnetic wave Light in the electromagnetic spectrum

Visible light: $\sim 380 - 780$ nm

1.4 Light as an electromagnetic wave Interfaces between different materials

Continuity conditions (required by Maxwell's equations)

- Tangential components of \vec{E} and \vec{H} are continuous, i.e., the same on both sides of the interface
- Perpendicular components of $\vec{D} = \varepsilon \varepsilon_0 \vec{E}$ and $\vec{B} = \mu \mu_0 \vec{H}$ are continuous

Consequence (a): Snell's law of refraction

 Continuity conditions are true at every point of the interface

 \rightarrow tangential component of \vec{k} is continuous Length of \vec{k} changes according to different refractive index

 \rightarrow perpendicular component must adapt

1.4 Light as an electromagnetic wave Interfaces between different materials

Consequence of continuity conditions (b): Fresnel coefficients

Three waves to match all conditions : incident, transmitted, reflected

 α_1

Matching conditions depend on polarization

plane of incidence is spanned by 3 wave vectors

polarization is defined by \vec{E} field with respect to the plane of incidence

Amplitude reflection and transmission coefficients:

$$r_{s} = \frac{n_{1} \cos \alpha_{1} - n_{2} \cos \alpha_{2}}{n_{1} \cos \alpha_{1} + n_{2} \cos \alpha_{2}} \qquad r_{p} = \frac{n_{1} \cos \alpha_{2} - n_{2} \cos \alpha_{1}}{n_{1} \cos \alpha_{2} + n_{2} \cos \alpha_{1}}$$
$$t_{s} = \frac{2n_{1} \cos \alpha_{1}}{n_{1} \cos \alpha_{1} + n_{2} \cos \alpha_{2}} \qquad t_{p} = \frac{2n_{1} \cos \alpha_{1}}{n_{1} \cos \alpha_{2} + n_{2} \cos \alpha_{1}}$$

reflected:

$$E_r = r \cdot E_i$$

transmitted: $E_t = t \cdot E_i$

Rogin / Oliveira, Saarbrücken 2018 20

www.leibniz-inm.de

Superposition of waves \rightarrow amplitudes add up

1.4 Light as an electromagnetic wave

Constructive interference:

Interference

- same direction / sign
- $I \propto (E_1 + E_2)^2 = E_1^2 + E_2^2 + 2E_1E_2$
- Intensity > sum of separate intensities

Destructive interference:

- opposite direction / sign
- $I \propto (E_1 E_2)^2 = E_1^2 + E_2^2 2E_1E_2$
- Intensity < sum of separate intensities

temporal: sufficiently stable frequency for paths of different length

spatial: different points of a light source are correlated

1.4 Light as an electromagnetic wave Huygens' principle

Not everything is a plane wave

Basic idea: Each point in space is the origin of a spherical wave correlated with the wave field. All spherical waves interfere with each other.

- Undisturbed case: The result is the wave field as it was
- Disturbed case: Basis for scalar diffraction theory (Perturbation: any inhomogeneity in the material, i.e. the spatial distribution of ε)
- ► Example: Young's double-slit experiment
 → ultimate proof for wave character of light

2.1 Optical effects of periodic microstructures Gratings and lattices

Description of periodic structures in space

Grating: 2D (sheet-like) structure, periodic within the sheet plane Lattice: 3D (volume) structure, periodic in all three dimensions

Simplest case: grating of parallel lines

Just like an optical wave, but static:

 $F(\boldsymbol{x}) = A \cdot \cos\left(\vec{K} \cdot \vec{x}\right)$

 \vec{K} = grating vector (or lattice vector)

F can be any quantity relevant to optics:

- refractive index
- absorption
- height of a surface (2D gratings only)

2.1 Optical effects of periodic microstructures Grating diffraction

Interaction of a light wave with a grating

Incident light:

$$\vec{E}_{incident}(\vec{x},t) = \vec{E}_{incident}^{0} cos\left(\vec{k}\cdot\vec{x}-\omega t\right)$$

 \vec{k} is not parallel to the grating plane

Result:

- Attenuation of incident wave
- Additional plane waves:

$$\vec{E}_{\pm}(x,t) = \vec{E}_{\pm}^{0} \cos\left(\vec{k}_{\pm} \cdot \vec{x} + \delta_{\pm} - \omega t\right)$$

- tangential component of \vec{k}_{\pm} is obtained by adding / subtracting \vec{K}
- perpendicular component of \vec{k}_{\pm} adjusts to maintain correct length

2.1 Optical effects of periodic microstructures Diffraction – general case

General description of a periodic structure:

Superposition of harmonic modulations with different K (Fourier representation)

Condition for diffraction: There must be a lattice vector \vec{K} present with

$$\vec{k}_{diffracted} = \vec{k}_{incident} \pm \vec{K}$$
 (Bragg condition)

Additionally, the length of \vec{k} must remain constant (conservation of energy).

- Diffraction only for special combinations of incident and diffracted wave vectors
- Basis for crystal structure analysis by X-ray diffraction

Special case for thin gratings: perpendicular component of \vec{k}_{\pm} adjusts to maintain correct length

2.1 Optical effects of periodic microstructures Examples

hexagonal array of holes in a metal film

CD / DVD

natural opal

2.2 Non-periodic microstructures From diffraction to scattering

Loss of strict periodicity in the structure

→ Fourier representation turns into a continuous spectrum

 \rightarrow Loss of selectivity in the diffraction condition

Partial loss of periodicity:

- Still some selectivity
- Preferences for some wavelengths: structural colors
- Preferences for some angles

Complete loss of periodicity / complete randomness:

- Uniform scattering
- Can be interpreted as a "random walk" of photons

2.2 Non-periodic microstructures Examples

Partially periodic

Completely random

2.3 Periodic nanostructures Metamaterials

Transition from "micro" to "nano":

- Semi-official: feature size < 100 nm
- Convenient for optics: periodicity < $\lambda/2$ (roughly equivalent for visible light)

Why?

- Periodicity < $\lambda/2$ means $K > 2 \cdot k$
- No chance to maintain correct length of the diffracted wave vector, even with a full reversal of the direction of propagation
- Result: periodic structure becomes invisible!

But: Properties of the structural units still remain active

- Anisotropy & polarization
- Unusual dispersion relations (wavelength dependence of refractive index)

2.3 Periodic nanostructures Metamaterials - Examples

Moth eye: one of few examples for optical wavelengths

Many proof of principle demonstrations with microwaves

Cloaking devices

. . .

Negative refractive index

Metamaterial cloak (Source: K. Kim, Yonsei University; via Welt der Physik)

3.1 Vertically structured surfaces Modifying reflectivity

Surface reflection from transparent materials

Reason: Matching electromagnetic field amplitudes on both sides of the surface (Fresnel reflection)

Amplitude reflection coefficient:

$$r = \frac{n_1 - n_2}{n_1 + n_2}$$

@ normal incidence (angle dependent) (Intensity reflection coefficient is r^2 !)

Task: Either decrease or increase reflectivity

3.1 Vertically structured surfaces Why antireflective surfaces?

Maximize light throughput:

Maximize contrast:

3.1 Vertically structured surfaces
 Approaches for antireflective surfaces (2)

Gradient index (GRIN) surfaces

True GRIN is difficult, approximation by a series of layers with small refractive index differences is possible.

Additional difficulty: Refractive index of air is 1.0, but the lowest refractive index of a solid material is 1.38 (MgF_2); porous silica can go down to 1.22, but has other issues.

Not competitive in practice

Layer parameters for optimum antireflective effect:

Destructive interference of reflected partial waves

Approaches for antireflective surfaces (2)

3.1 Vertically structured surfaces

refractive index = $\sqrt{n_1 n_2}$

Single interference layer

Technically used for low cost applications

www.leibniz-inm.de

3.1 Vertically structured surfaces
 Approaches for antireflective surfaces (3)

Multiple interference layers

Increased bandwidth

Various designs possible (example: 3 layers) Still, generally: thickness of each layer = $\lambda/4$

3.1 Vertically structured surfaces
 Approaches for antireflective surfaces (4)

Moth eye structures

Metamaterial to achieve

- Iow average refractive index
- some GRIN effect

300 nm

Rather limited technical application sensitive to soiling and wear

30

www.leibniz-inm.de

General requirements for layer materials:

- Refractive index: from very low to very high
- Transmission range may vary depending on the application
- Resistance to environmental conditions depending on the application

Typical materials:

- MgF₂ (n=1.38, soft, broad transmission range)
- Amorphous silica (SiO₂; n= 1.46, hard, UV transparent)
- Porous silica (n down to 1.22, very soft)
- TiO₂ (n = 2.4 to >3 for dense material; hard; UV cutoff below 400 nm)
- ZrO₂ (n = 2.13; hard; transparent for near UV)

3.1 Vertically structured surfaces How to make interference layer systems

1. Gas phase deposition

- Physical vapor deposition
- Chemical vapor deposition

Features:

- High quality coatings
- Suitable for small substrates
- High equipment cost

2. Sol-Gel and related methods

Wet chemical synthesis based on hydrolysis and condensation reactions starting from suitable precursors

- Depending on synthesis route: nanoparticles or amorphous network dispersed in organic solvent
- May be modified with organic cross-linkers for low-temperature stability
- Various coating methods: Spin coating, dip coating, continuous roll-to-roll processes
- UV and / or thermal curing

3.1 Vertically structured surfaces Wet coated interference layers

Dip coating for rigid substrates

Roll-to-roll coating line

Coated PET foil

beam splitter

laser beam

Origination methods for nano-/microstructured surfaces

Self assembly of nano-/microparticles

mirror

3.2 Horizontally structured surfaces

Gratings, holograms and moth eyes

- Specific etching methods
- ▶ Direct writing (laser, electron beam) → high resolution, but very slow

Holographic writing:

substrate

coated with

3.2 Horizontally structured surfaces From master structure to mass production

Origination → Master structure

www.leibniz-inm.de

3.2 Horizontally structured surfaces Replication techniques

- Hot embossing
 - limited to thermoplastic polymers
 - needs to cool while in contact with the tool
 → slow process
- Reactive casting
 - UV curing through the substrate foil (needs to be transparent) or through a transparent tool (silicone)
 - well-established process, fast
- Embossing into a thixotropic resin (INM approach)
 - shaping with high shear rate, but no relaxation afterwards
 - curing after removing the tool
 - fast alternative for non-transparent substrates

Goal: use nanoparticles to modify the properties of a polymer material ...

- Change the refractive index
- Modify the dispersion curve
- Increase hardness / wear resistance
- Add electrical functionalities
- ...

... without sacrificing transparency!

Challenge: Periodic structures may become invisible with feature sizes below $\lambda/4$ (half period), but inhomogeneities in random distributions of particles are much larger than the particles themselves \rightarrow Particles need to be really small!

4. Nanocomposites Importance of particle size

Transparency of randomly distributed particles:

$$\frac{I}{I_0} = exp -4 \cdot \frac{\pi^4}{\lambda^4} \cdot d^3 \cdot \left(\frac{n_p^2 - n_m^2}{n_p^2 + 2 \cdot n_m^2}\right)^2 \cdot c \cdot L$$

- λ = Wavelength
- d = Particle diameter
- n_p = Refractive index particles
- $n_{m}^{'}$ = Refractive index matrix
- c = Particle concentration
- L = Thickness bulk

- Notes: 1. Applies also to nanoporous materials
 - 2. Good dispersion (avoiding agglomeration) is equally important

www.leibniz-inm.de

• 4. Nanocomposites

An example of a nanocomposite for microstructures

Target

- Development of Light Management Foils (LMF)
- Enhancement of brightness and contrast, reduced viewing angle dependence for LCD
- Better brightness and contrast, lower sensitivity to ambient light for projection screens

Methods

- Photosensitive gradient index material based on cross-linkable nanoparticles in a gel-like matrix
- Irradiation of this material through a mask produces a columnar microstructure with angledependent scattering properties
- Continuous roll-to-roll processes for coating, mask lamination and irradiation

4. Nanocomposites Light management foils

Results

- 50 μm thick films with pronounced angle-dependent scattering
 - High haze (>94 %) for light incident from preferred direction
 - Significantly lower haze for other directions
- LMF as diffuser in LCDs:
 - approx. 20 % higher brightness and contrast
- LMF on mirror delivers even greater improvement

Applications

- Diffusers for LCD panels
- Projection screens
- Lighting

Projection screen LMF on mirror

Summary of most important topics

Theory

- What is light
- Formalism for describing electromagnetic waves
- Interaction of light with materials structured on microscopic / submicroscopic scale

Application & technology

- Antireflective surfaces
- Microstructured surfaces
- Nanocomposites

Dr. Peter Rogin / Dr. Peter W. de Oliveira INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken (Germany)

Phone: + 49681-9300-319 Fax: + 49681-9300-223 peter.rogin@leibniz-inm.de www.leibniz-inm.de