

NANO/BIO-MATERIALIEN: MIKRO/NANOMETALLE

Dr. Karsten Moh und Prof. Eduard Arzt

WS 2018

METALLIC THIN FILMS

integrated circuits, data storage

- in SAW filters (cellular phones)
- metallization in semiconductor devices and on polymer substrates
- delamination and AC induced damage by Joule heating
 → micromechanics important!

micro-electro-mechanical systems (MEMS)

wear or corrosion protection, thermal barriers

2

STRESSES IN THIN FILMS

Stresses are always present in thin films. They can limit the reliability of systems. Stresses can be measured by optical, electrical or X-ray techniques.

THIN FILMS: STUTTGART MICROTENSILE TEST

Elastic strain in a crystalline metallic film is determined by X-ray diffraction and compared to the total strain of the sample measured by a laser extensometer. Note that stress state is biaxial (Poisson contraction).

Baker, Kretschmann, Hommel, Kraft, MPI Metallforschung

SYNCHROTRON-BASED TENSILE TESTING TECHNIQUE

J Boehm et al, Rev. Sci. Instr. **75**, 1110 (2004) PA Gruber et al, Acta Mater **56**, 2318 (2008)

5

STRESS-STRAIN CURVES OF THIN CU FILMS

The yield stress increases strongly with decreasing film thickness.

6

MODELLING THIN FILM STRENGTH: NIX/THOMPSON

Thin film strength is modeled by considering dislocation advance constrained by the film. As a result, the yield stress should scale inversely with film thickness.

W.D. Nix, Metall. Trans. A20, 2217, 1989

energy balance

$$dW = \frac{h}{h}\tau b \, dx$$

$$dE = \frac{Gb^2}{4\pi} \ln \frac{R}{r} \, dx$$

τ...shear stressb...Burgers' vectorG...shear modulusE...line energy

7

IN SITU TEM EXPERIMENT

Epitaxial Al film on (0001) α -Al₂O₃

200 nm

Dehm et al., MPI Metallforschung

Numerical dislocation modeling inside a cube by v. Blanckenhagen et al.

DATA COMPILATION FOR COPPER

O. Kraft et al., Ann. Rev. Mat. Sci. 40, 293 (2010)

FATIGUE IN SMALL DIMENSIONS (CU)

Mughrabi et al. 1979

During repeated loading, dislocations rearrange into soft regions (**PSB=persistent slip bands**). These regions may act as crack starters and lead to fatigue damage.

FATIGUE OF THIN CU FILMS: SIZE EFFECTS

Zhang, Kraft, Volkert, Arzt

FATIGUE AT ULTRAHIGH FREQUENCIES

Eigenfrequency analysis of an electrode/substrate model

C. Eberl et al., MPI Metallforschung

"1D": Microcompression test on pillars

Micropillars (FIB-machined): compressed with a nanoindenter equipped with a flat punch Advantages: uniaxial stress state, constant test temperature, easy sample handling.....

Uchic et al., Science (2004); Uchic et al., Annu. Rev. (2009)

• OVERVIEW OF FCC METALS RESULTS

Compression tests on FIB machined, single crystalline pillars show:

- intermittent plastic flow (burst behavior)
- a rising flow stress with decreasing sample size
- power law scaling of yield stress and pillar diameter

Frick and Schneider, MSEA (2008)

Micropillar – Size effect: explanations

Starvation theory

Dislocations leave the pillar before multiplication processes can occur

→Dislocation nucleation required

Source exhaustion

Limited number of active dislocation sources in small dimensions

→Source exhaustion leads to the activation of less favorable sources

Source controlled deformation

Shan et al. (2008)

Rao et al. (2008)

NANOCRYSTALLINE MATERIALS (3D)

As the grain size is decreased, an increasing fraction of atoms can be ascribed to the grain boundaries (and triple junctions)

Gleiter (2000); Palumbo et al. (1990)

Nanocrystalline materials - Synthesis

Inert gas condensation

Bright field image of TiO₂ nanoparticles prepared by inert gas condensation

Nanocrystalline materials - Synthesis

Dark field image of nanocrystalline Al-Mg alloy synthesized by cryogenic ball milling

Electrodeposition

Pulsed electrodeposited Ni

Zhou et al. (2000); Courtesy of M. Göken

Nanocrystalline materials - Synthesis

Nanocrystalline materials - size effect

Meyers et al., (2005) www.leibniz-inm.de

Nanocrystalline materials - Hall-Petch effect 1

Stress acting at the head of the pile-up

$$\tau = n \tau_a$$

The number of dislocations in a pile-up depends on the length of the pile-up

$$L = \frac{\alpha nGb}{\pi \tau_a}$$

If the source of the pile-up is located at the center of the grain, then

$$L = \frac{d}{2}$$

 τ_a : resolved shear stress

- *n*: number of dislocations in the pile-up
- d: grain size
- *L*: length of the pile-up
- a: geometrical constant

Nanocrystalline materials - Hall-Petch effect 2

The dislocations will be able to overcome the grain boundary if

 $n\tau_a \geq \tau_c$

$$rac{lpha d au_a}{2Gb/\pi} au_a \ge au_c \quad ext{or} \quad rac{lpha d au_a^2}{2Gb/\pi} \ge au_c$$

Taking into account the friction stress τ_0

$$\tau_a \geq \tau_0 + kd^{-1/2}$$

 τ_c : critical stress to overcome obstacle τ_o : friction stress

Nanocrystalline materials - strength + ductility

Usually strengthening decreases ductility and toughness. By contrast, grain refinement can improve both **yield stress** and **ductility**. New studies (Valiev et al.) indicate that this particularly significant in **nanocrystalline materials**.

Nanocrystalline materials - Applications

Grain size effects in magnetism

$$H_{C} = H_{C0} + \frac{k_{m}}{d} \qquad \delta = \pi \left(\frac{A}{K_{1}}\right)^{1/2}$$

dreak down for

$$\delta \approx d \qquad \Longrightarrow \qquad H_c \propto d^6$$

Nanocrystalline alloys, where the grains are smaller than the domain wall width, provide low coercivity H_c → soft magnets

Herzer (1993); Arzt (1998)

Nix-Freund model for single-crystal films Polycrystals: additional strengthening, constrained diffusion

Fatigue strength increases for smaller systems (Cu: ca. 3 µm)

SMALL = STRONG but: stress relaxation necessary!

Pillars (1D): fundamental studies possible

Nanocrystalline metals: high strength + high ductility better biocompatibility (?) application: e.g. soft magnets