

TECHNOLOGIE POLYMERE & KOMPOSITE

MC07, UdS WS 2019/2020

Chapter 6: Dynamic mechanical behaviour

© Carsten Becker-Willinger

Dynamic-mechanical-thermal (DMTA) experiment: Enforced damped vibration

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

www.leibniz-inm.de

time scales long compared to t_R: ٠

E approaches 0 + Maxwell element shows pure viscous reaction.

short loading times: pure elastic reaction of the system ۲

the stress is reduced to 1/e of the initial value.

$\sigma = \sigma_0 \exp\left(-\frac{tE}{n}\right)$

At the time

•

 $t_R = \left(\frac{\eta}{E}\right)$ t_R : relaxation time

 σ : stress ε: strain

t: time

E: stiffness of the spring or elastic modulus η: damping constant or viscosity.

If a Maxwell element is subjected to a fixe strain then

the stress decreases over the time exponentially.

$$\frac{d\varepsilon}{dt} = \left(\frac{1}{E}\right)\left(\frac{d\sigma}{dt}\right) + \frac{\sigma}{\eta} \quad \text{at constant shear rates} \quad \left(\frac{d\varepsilon}{dt} = 0\right) \quad \text{the result is} \quad \frac{d\sigma}{dt} + \frac{E\sigma}{\eta} = 0$$

at constant shear rates
$$\left(\frac{d\varepsilon}{dt}=0\right)$$
 the result is

The relation between changing deformation (strain) and stress is

 $\sigma^* = \varepsilon^* E^*(\omega)$

 $E^{*}(\omega)$ as the frequency dependent dynamic modulus:

$$\boldsymbol{E}^{*}(\boldsymbol{\omega}) = \boldsymbol{E}'(\boldsymbol{\omega}) + \boldsymbol{i}\boldsymbol{E}''(\boldsymbol{\omega})$$

 $\tan \delta = \frac{E''(\omega)}{F'(\omega)}$

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

www.leibniz-inm.de

E''

E*

Phase angle &

E'

The complex modulus

The harmonic deformation can be described as a function of frequency ω and amplitude ε_{α} in complex manner:

ω = 2πν $\varepsilon^* = \varepsilon_0 \exp(i\omega t)$ v: frequency $i^2 = -1$

The typical transition regions detectable in DMTA measurements

temperature / °C

Time temperature analogy also visible in DMTA when performed as a stress relaxation experiment

log stress relaxation modulus E (t)

time

oscillating rheometer e.g. RSA G2 TA Instruments

static and dynamic viscosity of

- dispersions, emulsions
- molten polymers

dynamic-mechanical-thermal analysis e.g. Q800 TA Instruments

- dynamic-mechanical analysis of polymers
- stress relaxation experiments
- creep experiments

	TA Instrument DMA Specifications	
	Q800	RSA G2
Max Force	18 N	35 N
Min Force	0.0001 N	0.0005 N
Force Resolution	0.00001 N	0.00001 N
Frequency Range	0.01 to 200 Hz	2E-5 to 100 Hz
Dynamic Sample		
Deformation Range	+/- 0.5 to 10,000 µm	+/- 0.05 to 1,500 μm
Strain Resolution	1 nm	1 nm
Modulus Range	10 ³ to 3*10 ¹² Pa	10 ³ to 3*10 ¹² Pa
Modulus Precision	+/- 1%	+/- 1%
Tan delta Sensitivity	0.0001	0.0001
Tan delta	0.00001	0.00001
Resolution		
Temp range	-150 to 600°C	-150 to 600°C
Heating Rate	0.1 to 20°C/min	0.1 to 60°C/min
Cooling Rate	0.1 to 10°C/min	0.1 to 60°C/min
Isothermal Stability	+/- 0.1°C	+/- 0.1°C

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Adjusting to samples with different elastic modulus and stiffness

Possible measurement modes DMTA

Different clamps available

All the necessary types of clamps for testing

- Solid bars
- Elastomers
- Soft foams
- Thin films
- Fibres
- Designed using FEA, optimizing
 - Low mass
 - High stiffness/Low compliance
- Automatic compliance calibration (and correction) for each clamp

Choose the correct clamps for testing

• Sample Dimension

- Films and fibers: tension clamps
- Bars and cylinders: bending clamps
- O-rings and tablets: compression and/or shear

Deformation Mode

- E [tension, compression and bending]
- G [shear]
- Sample Stiffness
 - Machine range fixed: 100 10, 000,000 N/m. Stiffness of sample related to its dimensions [l, w, t]. Stiffness may limit sample size to below clamp maximum.

Mounting of different measurement heads

Alignment of the sample in e.g. tensile mode

Sample preparation: Shape is important

Sample preparation: Shape is important

Three Point Bending

Force Sample Twists Rather than Bending. Modulus Is artificially low.

Sample preparation: Shape is important

- Foams, elastomers, and gels can be difficult to cut flat and parallel. Need to get good contact over
- Don't try to compensate for poor sample contact with too much

Special sample preparation tubes

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Measurement frequency

• Single Frequency

- Temperature ramp most popular for rapid evaluations 1 Hz or 10 Hz (6.28 or 63 rad/sec) for most experiments
- Multiple Frequencies
 - Frequency sweeps at ambient for viscoelastic properties
 - Frequency sweeps at multiple temperatures for Time-Temperature Superpositioning (TTS)
 - Run from high to low frequencies for faster initial data acqusition

Data Collection Rate

- Lower frequencies take longer time control experiment
- More frequencies = longer experiment

The effect of M_w and branching of polymers

The influence on cross-linking density

Investigation of curing behavour of resin

Amplitude (p-p) = 0.40 mm

time / min

G' / MPa

Effect of measurement frequency

increasing Tg with increasing measurement frequency

Analysis of Nylon 6: Temperature Scans with Humidity

Blends from immiscible polymers: e.g. polystyrene (PS) and polybutadiene (PB)

in phase separated blends out of 2 polymers also 2 T_g's are detectable

Storage modulus E' from DMTA for P(MMA-co-HEMA) / SiO₂ - nanocomposites

Damping tan δ from DMTA for P(MMA-co-HEMA) / SiO_2 - nanocomposites

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Dynamic mechanical thermal analysis (DMTA) for polymers filled with particles

above Tg

b

flexible agglomerates

below Tg

rigid agglomerates

relative storage modulus $E'_{rel} = E'_{Komposit}/E'_{Matrix}$

reduced mechanical damping

 $\Delta_{\rm red} = \Delta / \Delta_{\rm M} \phi_{\rm M}$

 $\Delta_{red} < 1$ matrix = immobilised

- $\Delta_{red} = 1$ matrix = unaffected
- $\Delta_{\rm red} > 1$ additional damping mechnisms

B.L. Lee, L.E. Nielsen

Mechanical damping for P(MMA-co-HEMA) / SiO₂ - nanocomposites

10 nm SiO₂ with different surface modifications

Model calculation Δ : simple mixing rule

APTS: compatibilised MPTS: chemical bonding

> Indications for immobilised polymer matrix

Significant decrease of damping behaviour if particles are well dispersed and carry bonding sites

34

Tg – behaviour for P(MMA-co-HEMA) – nanocomposites containing SiO₂ – particles with different particle size

Information about the interface in polymer matrix nanocomposites ?

particle size 250 nm: matrix almost unaffected (small interfacial layer)

particle size 10 nm: interfacial layer with immobilised macromolecules on the large particle / matrix interface significantly affects the thermomechanical behaviour

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Morphology and glass transition temperature

glass transition temperature

= indicator of the change in the thermodynamic properties of the polymer matrix in presence of the filler particles

energy distribution of the polymer molecules close to the particle surface

