

TECHNOLOGIE POLYMERE & KOMPOSITE

MC07, UdS WS 2019/2020

Chapter 3: Polymer blends

© Carsten Becker-Willinger

Increasing strength while maintaining stiffness

How to create impact strength / toughness? (...without too much negative influence on stiffness...)

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

e.g. mixture PS + rubber

conventional impact resistant PS

impact resistant PS with high stability against stress cracking impact resistant PS with high surface gloss

H. Jenne

e.g. mixture PS + rubber

impact resistant PS
with elastomer
capsules (increased
transparency)

impact resistant PS with finely distributed rubber phase (fully transparent)

H. Jenne

Influence of morphology on stress-strain behaviour

e.g. ABS with small rubber particles

F. Haaf

Influence of morphology on stress-strain behaviour

e.g. ABS with bigger rubber particles

F. Haaf

Influence of morphology on stress-strain behaviour

F. Haaf

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

How does the dispersion process works?

- melt mixing process (kneader, extruder)
- flow behaviour of components
- external forces acting on the components
- theory for suspensions after Taylor (as a first approach)

- droplet that is dispersed in a newtonian liquid by shear forces
- no slip between matrix and droplet

difference in normal stress acts against capillary pressure from interfacial tension

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

- balance of forces at the interface
- deformation droplet towards an ellipsoid
- ellipsoid oriented along the shear field •

$$\delta P_N$$
 = -4G η_M / f(λ)

maximum δP_N at $\lambda = 1$

with

 δP_{N} : difference in normal stress G: shear rate η_M : viscosity of the matrix $\lambda = \eta_D / \eta_M$: viscosity ratio $\eta_{\rm D}$: viscosity of the disperse phase

Taylor theory III

- deformation of ellipsoid acts against interfacial tension
- interfacial tension prefers the spherical shape

$$\delta P_{L} = 4\sigma / d$$

with

 δP_L : capillary pressure σ : interfacial tension d : diameter of droplet

breakup of droplet if $-\delta P_N > \delta P_L$

- domain size decreases with decreasing interfacial tension and with shear rate and matrix viscosity
- smallest domains at λ = 1

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Breakup of droplets in non-newtonian media

- polymer melts have also elastic properties!
- unknown if droplet breakup criterion is valuable in viscoelastic polymer melts
 - elongated particles can also be stable
- dispersion not proportional over whole range of shear rate τ
 - elongated morphology at $\tau = G\eta > 10^4 Pa$
 - extrusion systems with high shear rates can promote formation of elongated particles
- influence of extensional flow
 - low molecular weight systems: almost no dependence of droplet size on $\boldsymbol{\lambda}$
- coalescence
 - dynamic equilibrium assumed, but no quantitative prediction

2-phase morphology

PE shows shrinkage due to crystallisation

D.J. Meier

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

VASILE FALLER AND 10µm 40001 SES 0.5% #0047 ×5000

blend from 30 % PE and 70 % PS

addition of 0.5 % SES as compatibiliser (styrene-*block*-ethylene-*block*-styrene copolymer)

D.J. Meier

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Compatibilisation reactions in the polymer melt

PP / PA-6 70 / 30

reactive compatibilisation with 2% Bisethoxybisphenol-A-diacrylate

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Disperse phases for polymers with matched yield stress

PA-12 yield stress adapted by use of plastisizer

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

2-phase morphology

Formation of disperse phases with core shell structure

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

3-phase morphology

PP / PA-6 blends

0% PPMSA

5% PPMSA

⊢3 µm –|

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

|- 3 µm -|

PP / PA-6 blends

20% PPMSA

10% PPMSA

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

PP / PA-6 70 / 30

|-10 µm-|

no compatibiliser

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

PP / PA-6 70 / 30

|- 5 µm -|

2.5 % PPMSA

10 % PPMSA

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Core-shell-type disperse phases

PP / PA-6 70 / 30

|−1,5 µm-|

|-,0,3 µm-|

20 % EPM-g-MSA

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Young's modulus of isolated PA-particle

PA-particle with elastomer inclusions

Core-shell or PA with elastomer inclusions?

PP / PA-6 / EPM-g-MSA 60 / 30 / 10

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Possibilities to influence stiffness / toughness relation

small homogeneous domains

stiff elastomeric shells

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

PP / PA-6 70 / 30

⊢0,5 µm–∣ 5% SEBS-g-MSA

⊢0,5 µm⊣ 5% SEBS-g-MSA

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

PP / SEBS-g-MSA / PA-6 50 / 20 / 30

|−0,2 µm -|

J. Rösch

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

|- 3 µm -|

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

F. Haaf

36

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

What is determining toughness in rubber toughend INM polymers? 25 strength(Jm 1200 20 Notched Izod impact strength (ft-lb/in) 25 wt.-% impact 5 800 15 wt.-% С Notched Izod 10 В 400 10 wt.-% 5 П

rubber particle diameter d / μ m

0

∩.2

0.5

0

5

4

2

3

How can the results be explained?

Particle concentration model

$$d_{\rm c} = 6\phi_{\rm r}/A_{\rm c}$$

Interfacial area model

 $d_{c} = \left[\left(\frac{6\phi_{r}}{\pi N_{c}} \right)^{1/3} \right]$

Interparticle distance model

$$d_{c} = T_{c} \left[\left(\frac{\pi}{6\phi} \right)^{1/3} - 1 \right]^{-1}$$

$$\begin{array}{l} - \ \ T_c = 0.304 \ \mu m \\ - \ \ N_c = 0.831 \ \mu m \\ - \ \ A_c = 1.508 \ \mu m \end{array}$$

Interparticulate distance seems to be important

plot against matrix ligament thickness (derived from TEM analysis)

Estimation of the mean interparticulate distance τ

estimation for a simple cubic packing

Determining parameters

particle size: d = 2rfiller content: ϕ

Interparticulate distance as important dimension

S. Wu, J. Appl.Polym.Sci 35 (1988), 549-561 000

000

000

000

000

k = 1,25 mm

large interface between nanoparticles and matrix

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Interfacial layers in nanocomposites

Volume fraction interfacial layer on overall matrix volume

 $[AIL] = [\phi/v(1-\phi)]^*(V-v)^*100$

 ϕ : filler volume fraction, d = 2*r: particle size, v = 4/3 π *r³: particle volume

 $V = 4/3\pi^*(r+i)^3$: volume particle + interfacial layer, r: particle radius, i: interfacial layer thickness

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Interfacial layers in polymer matrix composites

Example of a trans-crystalline layer on a fibre

PA-6.6 trans-crystalline layers (5-23 µm wide) on Kevlar fibres

R.H. Burton, M.J.Folkes

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Overlap of interfacial layers in dependence on filler aspect ratio

epitaxial growth of crystalline matrices

 $\phi_{\rm F} = 0,112$

 $\phi_{\rm F} = 0,112$

$\phi_{\rm F}\!\!:$ filler volume fraction

The attraction of nanoparticles

no light scattering if d < λ / 20

Solid state physical properties + polymer processing techniques

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

► SiO₂ – nanoparticles used for following example

Nissan MA-ST d₉₀ < 15 nm colloidal SiO₂ in methanole

TEM – micrograph from the unmodified diluted dispersion primary particles separable particle synthesis bottom-up from liquids

- chemically controlled precipitation process
 - control of nucleation (ΔG_n , ΔG_D , σ_N)
 - control of particle growth ($\Delta G_{G}, \Delta G_{D}, \sigma_{S}$)

Adsorption of macromolecules on solid surfaces

Principle of steric stabilisation

diffusion of solvent overlap of segments of molecules stabilising polymer chains lead to: increase of osmotic pressure (= driving force) diffusion of solvent molecules stabilising ...solvent pushes them polymer chains apart... adsorbed on the surface of the particles

... if particles approach and tend to agglomerate...

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Interfacial adhesion with rigid particles

low interfacial interaction

PA-6/(GlasSi-OH) ⊣6,66µm⊣ Sprödbruch eines Polyamid-6-Blends mit unfunktionalisierten Glaskugeln

high interfacial interaction

PA-6/(Glas-NH₂) |-6,66µm-| Sprödbruch eines Polyamid-6-Blends mit 3-APS-Gkaskugeln

Interfacial adhesion with rigid particles

formation of thicker elastomeric interlayers

. PA-6/(Glas-NH₂)Desm ⊣6,66µm⊣ Sprödbruch eines Polyamid-6-Blends mit isocyanatfunktonalisierten Glaskugeln

PA-6/(Glas-NH2)PH1 |-6,66µm-| Sprödbruch eines Polyamid-6-Blends mit polyharnstoffbeschichteten Glaskugeln, 10 Mol% PTHF-(3000)-diamin

Interfacial adhesion with rigid particles

formation of thicker elastomeric interlayers

. PA-6/(Glas-NH₂)PH3 |-6,66µm-| Sprödbruch eines Polyamid-6-Blends mit polyharnstoffbeschichteten Glaskugeln, 50 Mol% PTHF-(3000)-diamin

PA-6/(Glas-NH₂)PH4 ⊣6,66µm⊣ Sprödbruch eines Polyamid-6-Blends mit polyharnstoffbeschichteten Glaskugeln, 70 Mol% PTHF-(3000)-diamin

Compatibilisation by surface modification

silanes

- acidic
- basic
- non reactive
- polymerisable
- polycondensable
- adhesion
- anti-adhesion
- hydrophilic
- hydrophobic
- β -di-ketones
- complexing agents
- chelating agents
- oligomers

INA

SMSM-principle: Small Molecule Surface Modification

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

Thermodynamics in nanocomposites

<u>compatibilisation step</u> to overcome the interaction forces between the primary particles (by <u>smsm-principle</u>)

Specific surface modification of SiO₂ nanoparticles using alkoxysilanes

Compatibilisation by surface modification of the SiO₂

TEM – analysis on ultramicrotomed specimen from PMMA / SiO_2 nanocomposites 2 Vol.%

200 nm 200 nm 200 nm

unmodified SiO₂

APTS / SiO₂

MPTS / SiO₂

5 Vol.%

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020

morphology on ultramicrotomed specimen

unmodified SiO₂: agglomerates > 100 nm

APTS/MPTS - SiO₂: agglomerates consisting of 2-3 primary particles < 30 nm

Structural model after SAXS – analysis

Investigation of the agglomerate formation mechanism of the SiO₂ –particles During composite preparation

minimisation of the interfacial free energy

MC07 Techn Polym & Komp – C. Becker-Willinger – Saarbrücken – WS 2019/2020