

MATERIAL DATA SHEET

New Materials.

GENERAL INFORMATION

New Ideas.

The inks are based on metal nanoparticles (gold or silver) modified with conductive polythiophene derivatives. They exhibit good colloidal stability in polar solvents for long periods. Inks with a wide range of physical properties can be formulated to make them suitable in different applications. Room temperature drying is sufficient to obtain excellent conductivity without any further treatment. The sinter-free ink is suitable to inkjet print electronic structures on flexible substrates such as paper, PET, and silicone. International patent number WO 2017 045989 A1.

<100

1 - 1035 - 55

0.85 - 1.4

INK PHYSICAL PROPERTIES

- Solid content of the ink (w/w) [%]: 10 - 30
- Þ Particle size [nm]:
- Density [g/mL]: Þ
- Viscosity [cP]:
- Surface tension [mN/m]:

SOLVENT AND DURABILITY

- Solvent mixtures: water/methanol/ethanol/isopropanol/acetone
 - solvent dependent; 2 weeks 1 year Shelf life:

no sintering required

 $0.04 - 0.28 [\Omega/sq/mil]$ 9.9 · 10⁻⁷-7.0 · 10⁻⁶ [Ω m] 35 – 250 x bulk metal values

inkjet printing, blade coating etc.

MATERIAL PROPERTIES

- Sintering conditions:
- Resistance:
- **Processing:**
- Suitable substrates:

APPLICATIONS

- Printed electronics, circuits
- **OPVs**
- **OLEDs**
- Sensors

SAMPLING

Testing samples are available upon request.

glossy paper/glass/polymer sheets/rubber/ceramics

CONTACT

INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken/Germany www.leibniz-inm.de

Prof. Dr. Tobias Kraus Head of Structure Formation tobias.kraus@leibniz-inm.de Phone: +49681-9300-386 Fax: +49681-9300-279

