

NanoBioMaterials: ELECTRICAL DOUBLE LAYER CAPACITORS (EDLCs)

Prof. Dr. Volker Presser

CHAIR OF ENERGY MATERIALS RESEARCH PORTFOLIO

Introduction

INTRODUCTION

,10 kcal

(39%)

179 kcal

INTRODUCTION

Estimated U.S. Energy Consumption in 2015: 97.5 Quads

INTRODUCTION ENERGY STORAGE

INM

INTRODUCTION GLOBAL NUMBERS

100 W light bulb (0.0001 MW, 0.0009 GWh p.a.)

> Batteries (508 MW, 4,453 GWh p.a.)

Compressed air (440 MW, 3,857 GWh p.a.)

> Pumped hydroelectric energy (127,000 MW, 1,113,258 GWh p.a.)

Global energy generation (2,400,000 MW, 21,037,951 GWh p.a.)

INTRODUCTION ENERGY STORAGE – A PROBLEM ON ALL SCALES

INTRODUCTION COMPETITION OF TECHNOLOGIES

INTRODUCTION

INTERFACIAL ELECTROCHEMISTRY

Double-layer capacitance

charge +1e⁻ ++ 1e⁻ 2e⁻ 1e⁻ charged Ð 1e⁻ -1e⁻ discharge non-Faradaic **EDCL**

Surface redox capacity

INTRODUCTION BATTERIES VERSUS SUPERCAPACITORS

- Chemical reactions / ion insertion
- High energy density (100 Wh/kg)
- Low power density (1 kW/kg)
- Limited cycle lifetime (below 10,000)

- Electrosorption of ions and / or pseudocapacitance
- Low energy density (5 Wh/kg)
- High power density (10 kW/kg)
- Long lifetime (above 100,000)

INTRODUCTION

WHY ARE SUPERCAPACITORS "SUPER" OR "ULTRA"?

David V. Ragone Pronunciation: ru-GO-nee

THE CURRENT USE OF "PSEUDO" IN THE SUPERCAPACITOR COMMUNITY

- A capacitor is a system with linear and monotonic correlation between charge and voltage (i.e., the concept of Farad [F] is valid)
- A redox system is characterized by a large amount of charge transfer at a certain redox potential (i.e., the concept of Coulomb [mAh] is preferred)
- A system that behaves like a capacitor but actually accomplished faradaic charge transfer is called pseudocapacitor

TAKE HOME MESSAGES

- Batteries show redox peaks, supercapacitors do not
- Batteries are ideal for high energy storage density, but low power density
- Supercapacitors are ideal for high power density, but low energy storage density

The electrical double layer

CAPACITANCE VERSUS CAPACITY

CHARGE STORAGE MECHANISM

ELECTRICAL DOUBLE LAYER CHARGE STORAGE MECHANISM

Initial state

+2e⁻

Ion exchange

Co-ion expulsion

Counter-ion electro-adsorption

IN SITU RESEARCH PORTFOLIO

Quantification of ion electrosorption in carbon nanopores

Pt-CC

3.5 nm

HELMHOLTZ MODEL (1853-1879)

- Helmholtz first coined the phrase "double layer" (1853): two layers of charge at the interface between two dissimilar metals and later expanded this to metal/aqueous solution interface (1879)
- Fluid-Solid-Interface: sharp layer of electrons at the surface of the electrode, and a monolayer of ions in the electrolyte

$$\frac{Q}{U} \left[\frac{As}{V} \right] = C \left[F \right] = \frac{A \cdot \varepsilon_0 \cdot \varepsilon_r}{d}$$

- d : distance of closest
 approach of the charges =
 ionic radius
- ε_{r} : relative permittivity
- ϵ_0 : permittivity of vacuum
- $\varphi_e:$ potential at the electrode
- ϕ_s : potential in the solution (ad infinitum)

GOUY-CHAPMAN MODEL (1910-1913)

- Capacitance depends on the applied potential AND the ionic concentration
- Thermal motion as driving force for diffuse space charge
- Poisson equation: relating potential to charge density
- **Boltzmann equation: distribution of ions**
- Ions: point charges with no volume

GOUY-CHAPMAN-STERN MODEL (1924)

- Combination: condensed layer = Stern layer and diffuse layer = GC model
- Ions: point charges with no volume in the Diffuse layer
- Point of closest approach (radius of the ion) up to the Stern plane
- No ions or other charge (with their center) exactly in the Stern plane, neither in the Stern layer

ELECTRICAL DOUBLE LAYER GOUY-CHAPMAN-STERN MODEL (1924)

ELECTRICAL DOUBLE LAYER GOUY-CHAPMAN-STERN MODEL (1924)

- σ: surface charge (C/m²)
 R: gas constant 8.314 J/(mol·K)
 T: temperature (K)
 F: Faraday constant 96485 C/mol (NOT the unit Farad!)
 c_{inf}: bulk solution concentration ad infinitum
- ϵ_0 : 8.854·10⁻¹² C/Vm
- ε_r : water = 78

THE NATURE OF THE ELECTRICAL DOUBLE-LAYER

The electric double-layer "communicates" with the environment & vice versa Unique potential for energy harvesting, sensors, etc.

ELECTRICAL DOUBLE LAYER EXPANSION

b Double layer capacitance depends on the <u>ionic strength</u>

- Phase A: The cell is filled with high salinity water. The electrodes are charged from 274 mV to 300mV
- Phase B: The circuit is open. The cell is flushed with low salinity water. The voltage increases to 333 mV
- Phase C: The capacitor is discharged, towards 300 mV
- Phase D: The circuit is open. The cell is flushed with high salinity water and the voltage drops to 274 mV

ELECTRICAL DOUBLE LAYER EXPANSION

Double layer capacitance depends on the <u>temperature</u>

ADVANCED MODELS

FSI Models (dynamic)

SPECIFIC ENERGY

31

ELECTRICAL DOUBLE LAYER

SPECIFIC POWER

VOLTAGE WINDOW

ELECTRICAL DOUBLE LAYER RAGONE PLOT

ELECTRICAL DOUBLE LAYER LIGHTWEIGHT AND COMPACT DESIGN OF THE CURRENT COLLECTOR

Magnetron sputtering of thin film Al current collector boosts power and storage capacity of carbon supercapacitors

RAGONE CHART FOR CARBON BASED ENERGY STORAGE TECHNOLOGIES

ELECTRICAL DOUBLE LAYER TAKE HOME MESSAGES

- Ion electrosorption is the energy storage mechanism of double-layer capacitors
- The capacitance depends on electrolyte, surface area, and temperature
- High energy often sacrifices high power

Nanoporous carbon

NANOPOROUS CARBON

CARBON IS VERSATILE

Tunable

- sp²/sp³
- porous / dense
- outer / inner porosity
- nano / meso / macro
- conductive / isolative

Scalable synthesis

- Abundant sources
- Potentially "green"

NANOPOROUS CARBON CARBON NANOMATERIALS & NANOCARBONS

NANOPOROUS CARBON

CARBON MATERIALS

NANOPOROUS CARBON BESPOKEN CARBON POROSITY

Tuning carbon nanopores per activation parameters / synthesis strategy

NANOPOROUS CARBON

ELECTRICAL DOUBLE-LAYER CAPACITANCE

• Limited charge screening ability of carbon materials

Some complications:

- Capacitance dependent on electrolyte
- Voltage-dependency of differential capacitance
- Equilibrium or kinetic capacitance?
- Normalized to (what?) area or (which?) mass

NANOPOROUS CARBON ROLE OF CARBON POROSITY

Two conflicting views in the literature: regular vs. anomalous dependency of capacitance on pore size

NANOPOROUS CARBON ROLE OF CARBON POROSITY

Big picture: "anomalous" pattern is true, but we also have to consider different ion sizes for anode and cathode

NANOPOROUS CARBON

TAKE HOME MESSAGES

- Capacitance is pore size dependent
- Carbon shows a very limited charge screening ability
- Optimized performance only when carbon is matched to a certain electrolyte

Redox enabling EDLC

REDOX-ENABLING EDLC QUINONE-DECORATED CARBON ONIONS

9fold increase in capacitance and very stable cycling performance

HO

8

 $2 H^+ + 2 e^-$

OH

REDOX-ENABLING EDLC METAL OXIDE / CARBON ONION HYBRID

Hydrothermal synthesis of MnO₂/carbon onion hybrids

200

100

-100 -

aqueous

1 M Na₂SO₄ (2.8 Wh/kg)

1 M LiClO₄ in acetonitrile.

(16.4 Wh/kg)

REDOX-ENABLING EDLC METAL OXIDE / CDC HYBRID

VC-derived V₂O₅/VC-CDC core-shell particles

REDOX-ENABLING EDLC METAL OXIDE / CARBON FIBER HYBRID

Electrospun Nb₂O₅/carbon nanofibers

REDOX-ENABLING EDLC POTASSIUM FERRICYANIDE (AQUEOUS)

Using conventional activated carbon (YP80)

⁵¹ ACS Applied Materials & Interfaces, 2016, 8, 23676-23687.

REDOX-ENABLING EDLC TIN / VANADYL SULFATE (AQUEOUS)

Using conventional activated carbon (YP80)

(F/g)

2000

1000

-1000

0

Aqueous 0.75 M SnSO, / 1 M VOSO,

Activated carbon (YP80)

REDOX-ENABLING EDLC CELL BALANCING AND VOLTAGE WINDOW OPTIMIZATION

Electrode balancing to maximize storage capacity

REDOX-ENABLING EDLC

TAKE HOME MESSAGES

- Redox processes can severely boost the energy storage capacity
- Careful design of cell (electrode balancing / voltage window) is needed
- Redox processes in liquid phases particularly attractive

"Green" energy storage?

GREEN" ENERGY STORAGE? ACTUALLY, A DAILY QUESTION!

- Energy for mining / production
- Energy for packaging
- Energy for transport
- Energy for use
- Energy for recycling / disposal
- Light vs. heavy
- Abundant vs. rare
- Sustainable vs. non-renewable
- Local vs. far-far-away
- **•** Toxin release vs. harmless

GLASS VS PLASTIC VS ALUMINUM

GLOBAL WARMING POTENTIAL OF BEVERAGE BOTTLES

- A glass bottle needs to be recycled at least 20-times to come down to the carbon footprint of a single-use PET bottle
- High need for comparable and realistic fulllife-cycle assessment

GREEN" ENERGY STORAGE?

LITHIUM ION BATTERY VS LEAD ACID ACCUMULATOR

For just one cycle (1 Wh)

- Energy needed for LIB is 2.7-times higher than for lead acid accumulator!
- High energy costs for lithium ion battery (LIB) processing (electrode materials)
- High energy cots for transport (esp. for lead acid battery, LAB, from Asia)
- Factoring in device lifetime
 - Lithium ion battery: 10.000 > Lead acid battery: 2.000
- Thus, for a "normal" usage profile:
 - Time for a device to turn "green" = when just the same amount of energy is stored as was needed for production:
 - LIB: 0.65 years
 - LAB: 1.86 years

GREEN" ENERGY STORAGE? SOME GENERAL CONSIDERATIONS

The challenge

- Sustainability without higher price
- Green synthesis compatible with existing processes
- No decrease in performance (stability & ratings)

- Saving material by needing fewer cells
 - Improved energy & power ratings
 - Improved efficiency
- Saving energy related to transport
 - Lightweight construction
 - Use of local materials
- Saving energy related to production
 - Improved materials synthesis
 - Improved cell construction
- Sustainable chemistry
 - Green materials: Environmentally-friendly end-of-use
 - Green synthesis: Relaxed production processes

GREEN" ENERGY STORAGE? NOT ALL CARBON IS GREEN

Palm plantation

Crude oil

• "GREEN" ENERGY STORAGE? CONDUCTIVE ADDITIVES AND BINDER MATERIALS

Conductive additive

- Improves electrode conductivity
- Usually employs carbon black or nanographite
- Commonly 5-10 mass% added
- Complications:
 - Dead mass -> reduced energy ratings
 - Lowered electrochemical stability

Binder

- Enables film coherence and processing
- Usually employs fluoropolymers
- Commonly 5-10 mass% added
- Complications:
 - Dead mass -> reduced energy ratings
 - Lowered electrical conductivity

GREEN" ENERGY STORAGE? TAKE HOME MESSAGES

- Improved environmental friendliness is more realistic than targeting ideal green devices
- Greener processing is just as important as the use of green materials
- Water based electrolytes, esp. redox electrolytes, show great promise

Go green! Go lightweight! Go local! Appreciate progress!