

OPTICAL MATERIALS

Dr. Peter Rogin, Dr. Peter W. de Oliveira Saarbrücken, 2017

CONTENTS

1. Introduction

- 1.1 Significance of light
- 1.2 What is light
- 1.3 Light as an electromagnetic wave

2. Microstructures and nanostructures

- 2.1 Optical effects of periodic microstructures
- 2.2 Non-periodic microstructures
- 2.3 Periodic nanostructures

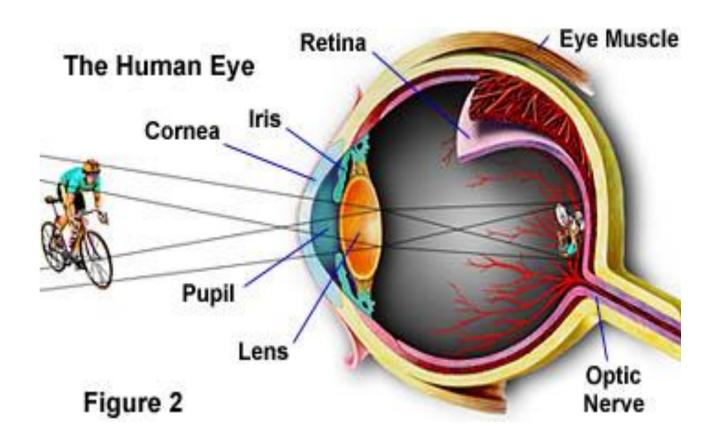
3. Structured surfaces

- 3.1 Vertically structured surfaces
- 3.2 Horizontally structured surfaces
- 4. Nanocomposite materials

▶ 1.1 Significance of light How we perceive the world

Vision – our most important tool for perceiving our surroundings

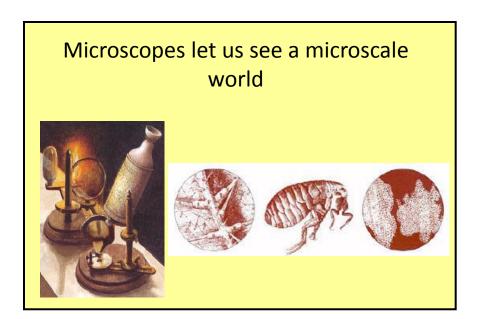
- evolved several hundred million years ago
- vital not only for humans
- high resolution imaging perception
 - Far field resolution: ca. 1 arc minute
 - Near field resolution: ca. 100 μm
- long range (millions of light years)


Phrases (german and english):

- "Sich ein Bild machen"
- "Ein Bild sagt mehr als tausend Worte"
- "Seeing is believing"

▶ 1.1 Significance of light

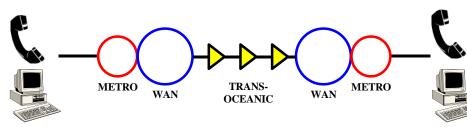
The eye – a biological optical system





▶ 1.1 Significance of light Expanding our capabilities of perception

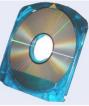
Optical instruments for a better understanding of the world we live in


our universe

▶ 1.1 Significance of light

Technical applications of optics

telecommunication


telephone data internet

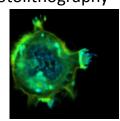
optical storage media

CD/DVD

Blu-ray disc (25GB)

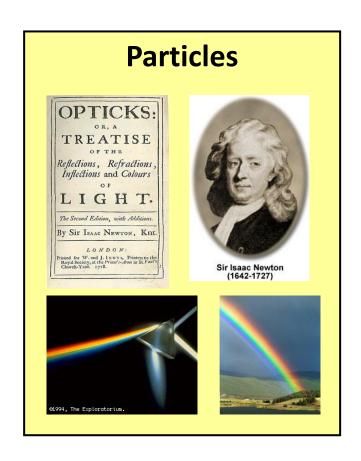

Precision laser machining

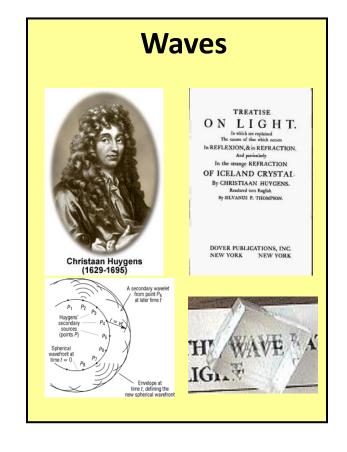
Laser cutting



Laser writing on human hair

Photolithography


3-D laser imaging of cell


biomedical imaging and therapy

▶ 1.2 What is light?

Historical Controversy

▶ 1.2 What is light?

Comparison of theories

Particles (classical):

- explains straight line propagation
- explains reflection (elastic bouncing)
- has difficulties with refraction
- does not explain diffraction & related phenomena

Waves (classical):

- less intuitive
- successfully explains all phenomena of classical optics

Quantum mechanics:

- answer depends on how the question is asked
- unambiguously particle-like (photons): quantization of energy h v and momentum $\frac{h}{2\pi} k$

▶ 1.3 Light as electromagnetic waves The wave equation (1)

Wave propagation

= specific mode of evolution of a quantity depending on position and time

("field", "amplitude")

Examples:

- Height of water surface on the sea
- Pressure (sound = acoustic waves)
- ▶ Elektric field *E* and magnetic field *H* (light)

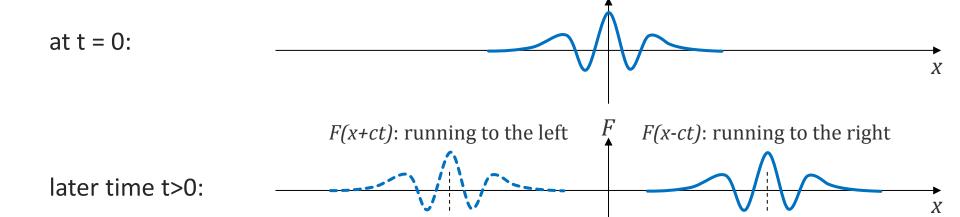
Wave equation

Description of wave propagation for a generalized field *F*:

$$\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 F}{\partial t^2}$$

For electromagnetic waves: a consequence of Maxwell's equations

▶ 1.3 Light as an electromagnetic waveThe wave equation (2)



Simplest case – only one spatial dimension :

$$\frac{\partial^2 F}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 F}{\partial t^2}$$

General solutions:

$$F(x,t) = F(x - c \cdot t)$$
 or $F(x,t) = F(x + c \cdot t)$

x=-ct

x=+ct

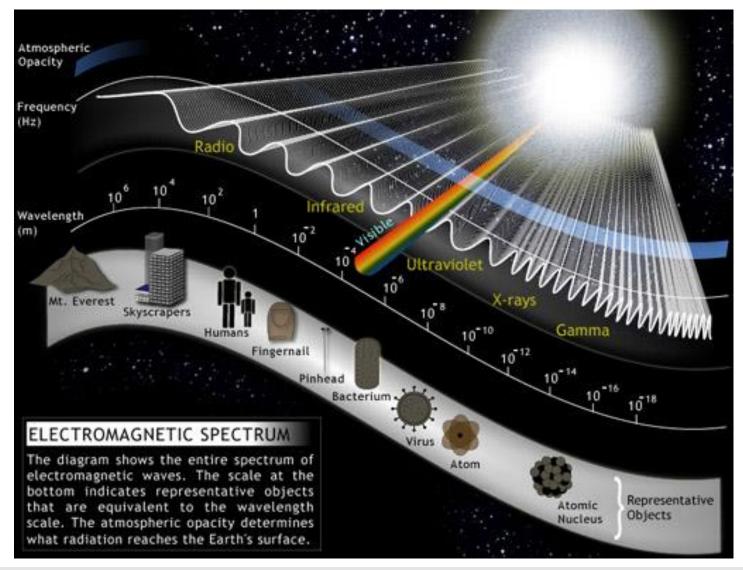
▶ 1.3 Light as an electromagnetic wave One-dimensional light propagation

Simplification: harmonic dependency on position and time

Electric field of a harmonic wave propagating in +x direction (in vacuum):

$$\mathbf{E}(x,t) = \mathbf{E}_0 \cdot \cos \left[\frac{2\pi}{\lambda} (x - c \cdot t) \right] = \mathbf{E}_0 \cdot \cos(k \cdot x - \omega \cdot t)$$

Where


- λ = wavelength
- ightharpoonup c = speed of light
- $\omega = 2\pi v = \frac{2\pi c}{\lambda}$ = angular frequency (2π times the oscillation frequency ν)
- $k = \frac{2\pi}{\lambda}$ = wave number = number of repeat units on 2π length units*

^{*} N.B.: In spectroscopy, people usually use the number of repeat units per cm as the wave number k, which corresponds to a rather odd length unit of $1/2\pi$ cm

▶ 1.3 Light as an electromagnetic wave

Light in the electromagnetic spectrum

▶ 1.3 Light as an electromagnetic wave The speed of light

From Maxwell's equations, vacuum:

$$c = \sqrt{\frac{1}{\varepsilon_0 \cdot \mu_0}}$$
 (= 299 792 458 m/s)

where

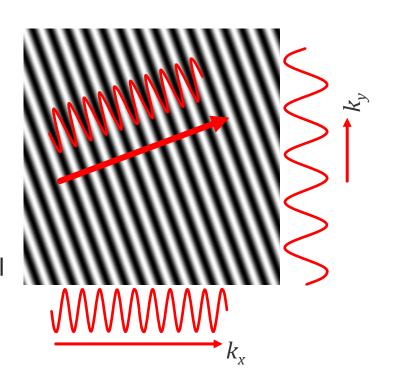
- ε_0 = vacuum permittivity
- μ_0 = vacuum permeability

In a material ("medium") having a relative permittivity ε and a relative permeability μ (\rightarrow refractive index $n=\sqrt{\varepsilon\mu}$):

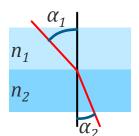
$$c_n = \sqrt{\frac{1}{\varepsilon \varepsilon_0 \cdot \mu \mu_0}} = \frac{c}{n}$$

N.B.: The frequency does not change when light passes a boundary between different media. The wavelength does!

▶ 1.3 Light as an electromagnetic wave Light in three-dimensional space



Plane wave approximation:


Wave number $k \rightarrow$ wave vector k

- Points along direction of propagation
- Length = 2π /wavelength*
- Wave fronts are perpendicular to k

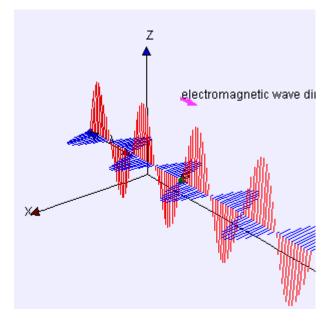
^{*}true for individual vector components as well

Explains e.g. Snell's law of refraction:

$$n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2$$
 (Snellius)

Why? Tangential component of **k** remains constant, change of length must be related to the perpendicular component ...

▶ 1.3 Light as an electromagnetic wave Properties of the electromagnetic field


Relation between wave vector and field vectors

(in isotropic media)

- Electric field E is perpendicular to k
- lacktriangle Magnetic field H is perpendicular to k
- ▶ E and H are perpendicular to each other

Polarization:

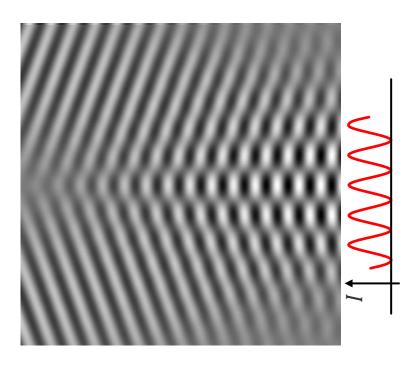
- ▶ Linear polarization: *E* und *H* oscillate in orthogonal planes
- lacktriangle Circular polarization: E und H rotate about k
- ▶ Elliptical polarization: mixture

Loo Kang Wee (via Wikipedia)

Intensity:

- Intensity I = power per unit area perpendicular to k
- Proportional to the squared amplitude E^2 (or H^2)

▶ 1.3 Light as an electromagnetic wave Interference


Superposition of waves → amplitudes add up

Constructive interference:

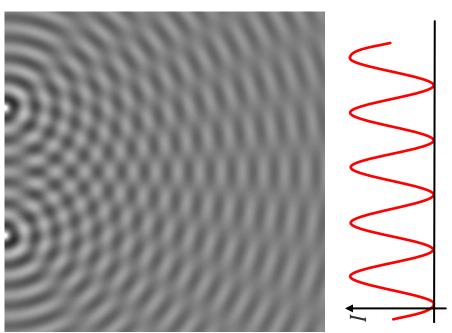
- same direction / sign
- $I \propto (E_1 + E_2)^2 = E_1^2 + E_2^2 + 2E_1E_2$
- Intensity > sum of separate intensities

Destructive interference:

- opposite direction / sign
- $I \propto (E_1 E_2)^2 = E_1^2 + E_2^2 2E_1E_2$
- Intensity < sum of separate intensities

Required: coherence = constant phase relationship

- spatial: different points of a light source are correlated
- temporal: sufficiently stable frequency for paths of different length


▶ 1.3 Light as an electromagnetic wave Huygens' principle

Not everything is a plane wave

Basic idea: Each point in space is the origin of a spherical wave correlated with the wave field. All spherical waves interfere with each other.

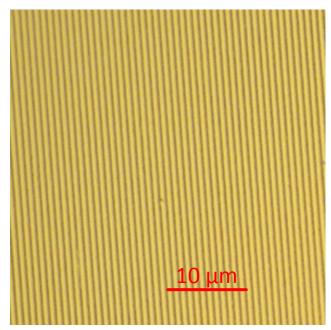
- Undisturbed case: Resultat ist the wave field as it was
- Disturbed case: Basis for scalar diffraction theory
- Example: Young's
 double-slit experiment
 → ultimate proof for wave
 character of light

2.1 Optical effects of periodic microstructures Gratings and lattices

Description of periodic structures in space

Grating: 2D (sheet-like) structure, periodic within the sheet plane

Lattice: 3D (volume) structure, periodic in all three dimensions


Simplest case: grating of parallel lines

Just like an optical wave, but static:

$$F(\mathbf{x}) = A \cdot \cos(\mathbf{K} \cdot \mathbf{x})$$

K = grating vector (or lattice vector)F can be any quantity relevant to optics:

- refractive index
- absorption
- height of a surface (gratings only)

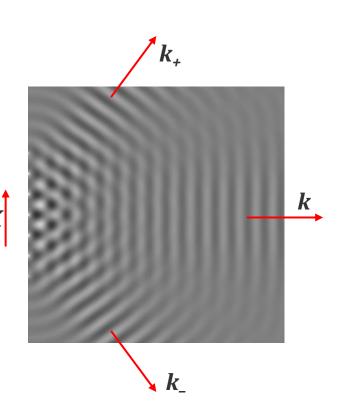
Diffraction grating of a monochromator (microscope image)

2.1 Optical effects of periodic microstructures Grating diffraction

Interaction of a light wave with a grating

Incident light:

$$E_{incident}(x,t) = E_{incident}^{0} \cos(kx - \omega t)$$


k is not parallel to the grating plane

Result:

- Attenuation of incident wave
- Additional plane waves:

$$\boldsymbol{E}_{\pm}(x,t) = \boldsymbol{E}_{\pm}^{0} \cos(\boldsymbol{k}_{\pm}x + \delta_{\pm} - \omega t)$$

- tangential component of k_{\pm} is obtained by adding / subtracting K
- perpendicular component of k_{\pm} adjusts to maintain correct length

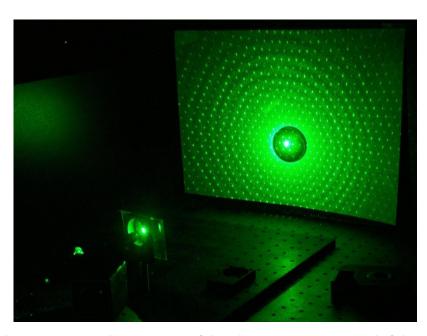
▶ 2.1 Optical effects of periodic microstructures Diffraction – general case

General description of a periodic structure:

Superposition of harmonic modulations with different K (Fourier representation)

Condition for diffraction: There must be a lattice vector **K** present with

$$k_{diffracted} = k_{incident} \pm K$$
 (Bragg condition)


Additionally, the length of k must remain constant (conservation of energy).

- Diffraction only for special combinations of incident and diffracted wave vectors
- Basis for crystal structure analysis by X-ray diffraction

Special case for thin gratings: perpendicular component of k_+ adjusts to maintain correct length

2.1 Optical effects of periodic microstructures Examples

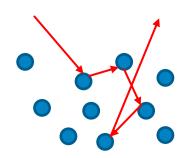
hexagonal array of holes in a metal film

CD / DVD

natural opal

2.2 Non-periodic microstructures From diffraction to scattering

Loss of strict periodicity in the structure


- → Fourier representation turns into a continuous spectrum
- → Loss of selectivity in the diffraction condition

Partial loss of periodicity:

- Still some selectivity
- Preferences for some wavelengths: structural colors
- Preferences for some angles

Complete loss of periodicity / complete randomness:

- Uniform scattering
- Can be interpreted as a "random walk" of photons

▶ 2.2 Non-periodic microstructures

Examples

Partially periodic

Completely random

2.3 Periodic nanostructures

Metamaterials

Transition from "micro" to "nano":

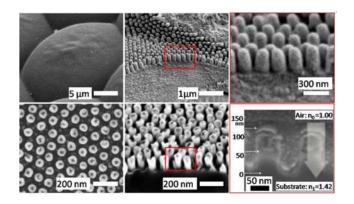
- Semi-official: feature size < 100 nm</p>
- \triangleright Convenient for optics: periodicity < $\lambda/2$ (roughly equivalent for visible light)

Why?

- Periodicity < $\lambda/2$ means $K > 2 \cdot k$
- No chance to maintain correct length of the diffracted wave vector, even with a full reversal of the direction of propagation
- Result: periodic structure becomes invisible!

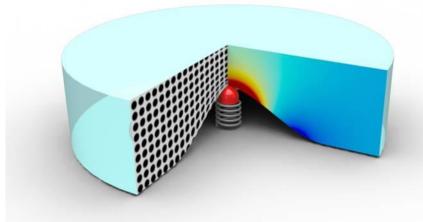
But: Properties of the structural units still remain active

- Anisotropy & polarization
- Unusual dispersion relations (wavelength dependence of refractive index)


▶ 2.3 Periodic nanostructures

Metamaterials - Examples

Moth eye: one of few examples for optical wavelengths



Many proof of principle demonstrations with microwaves

Cloaking devices

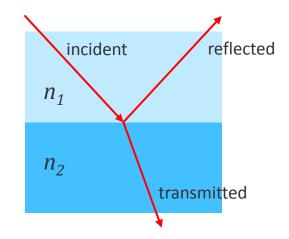
Negative refractive index

• • •

Metamaterial cloak (Source: K. Kim, Yonsei University; via Welt der Physik)

3.1 Vertically structured surfaces Modifying reflectivity

Surface reflection from transparent materials


▶ Reason: Matching electromagnetic field amplitudes on both sides of the surface (Fresnel reflection)

Amplitude reflection coefficient:

$$r = \frac{n_1 - n_2}{n_1 + n_2}$$

@ normal incidence (angle dependent) (Intensity reflection coefficient is r^2 !)

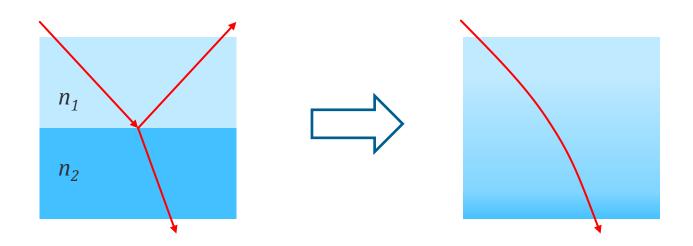
Task: Either decrease or increase reflectivity

▶ 3.1 Vertically structured surfaces

Why antireflective surfaces?

Maximize light throughput:

Maximize contrast:



3.1 Vertically structured surfaces Approaches for antireflective surfaces (2)

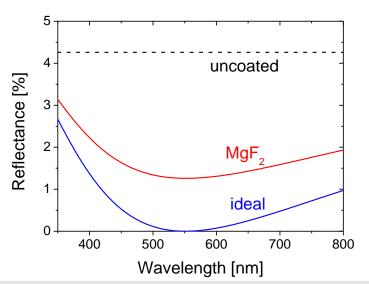
Gradient index (GRIN) surfaces

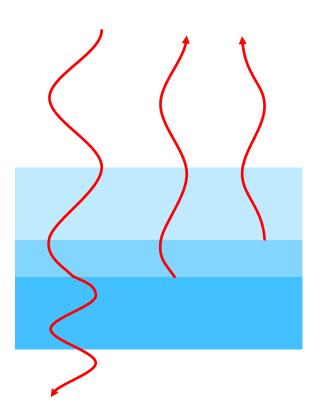
True GRIN is difficult, approximation by a series of layers with small refractive index differences is possible.

Additional difficulty: Refractive index of air is 1.0, but the lowest refractive index of a solid material is 1.38 (MgF_2); porous silica can go down to 1.22, but has other issues.

Not competitive in practise

▶ 3.1 Vertically structured surfaces Approaches for antireflective surfaces (2)




Single interference layer

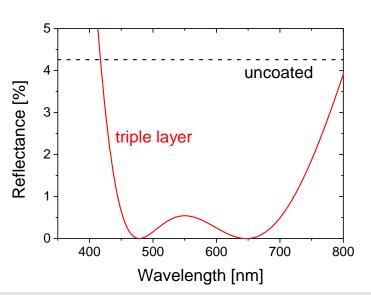
Destructive interference of reflected partial waves

Layer parameters for optimum antireflective effect:

- refractive index = $\sqrt{n_1 n_2}$
- thickness = $\lambda/4$

Technically used for low cost applications

▶ 3.1 Vertically structured surfaces Approaches for antireflective surfaces (3)



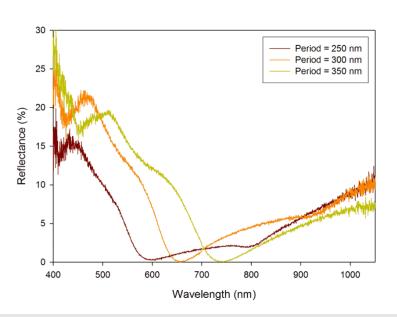
Multiple interference layers

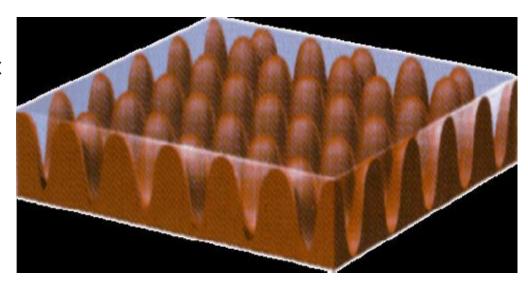
Increased bandwidth

Various designs possible

Still, generally: thickness of each layer = $\lambda/4$

Technically used for demanding applications; up to 12 layers


▶ 3.1 Vertically structured surfaces Approaches for antireflective surfaces (4)



Moth eye structures

Metamaterial to achieve

- low average refractive index
- some GRIN effect

300 nm

Rather limited technical application sensitive to soiling and wear

▶ 3.1 Vertically structured surfaces Materials for interference layer systems

General requirements for layer materials:

- Refractive index: from very low to very high
- Transmission range may vary depending on the application
- ▶ Resistance to environmental conditions depending on the application

Typical materials:

- MgF₂ (n=1.38, soft, broad transmission range)
- Amorphous silica (SiO₂; n= 1.46, hard, UV transparent)
- Porous silica (n down to 1.22, very soft)
- TiO₂ (n = 2.4 to >3 for dense material; hard; UV cutoff below 400 nm)
- $Arr ZrO_2$ (n = 2.13; hard; transparent for near UV)

▶ 3.1 Vertically structured surfaces How to make interference layer systems

1. Gas phase deposition

- Physical vapor deposition
- Chemical vapor deposition

Features:

- High quality coatings
- Suitable for small substrates
- High equipment cost

▶ 3.1 Vertically structured surfaces How to make interference layer systems

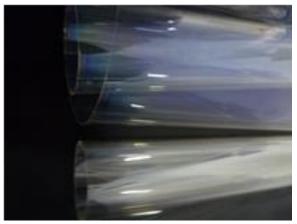
2. Sol-Gel and related methods

Wet chemical synthesis based on hydrolysis and condensation reactions starting from suitable precursors

- Depending on synthesis route: nanoparticles or amorphous network dispersed in organic solvent
- May be modified with organic cross-linkers for low-temperature stability
- Various coating methods: Spin coating, dip coating, continuous roll-to-roll processes
- UV and / or thermal curing

▶ 3.1 Vertically structured surfaces

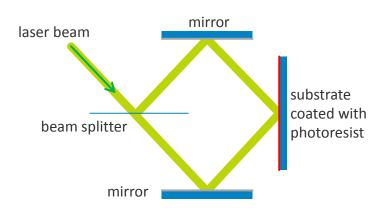
Wet coated interference layers

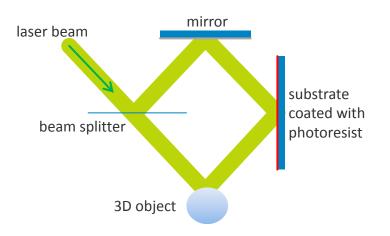


Dip coating for rigid substrates

Roll-to-roll coating line

Coated PET foil


3.2 Horizontally structured surfaces Gratings, holograms and moth eyes

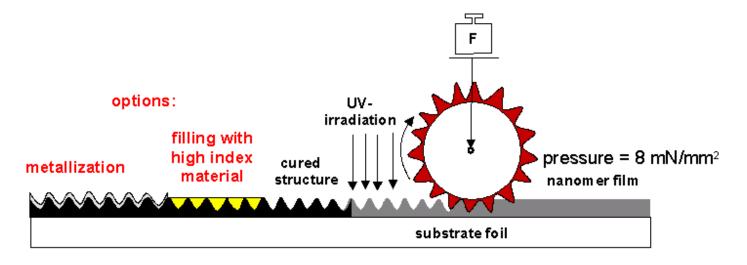

Origination methods for nano-/microstructured surfaces

- Self assembly of nano-/microparticles
- Specific etching methods

- → non-deterministic
- Direct writing (laser, electron beam) → high resolution, but very slow
- Holographic writing:

two beam interference gratings can be stitched (dot matrix)

classical holography


3.2 Horizontally structured surfaces From master structure to mass production

Origination → Master structure

At least one molding step for mass production typically several molding and electroforming steps combined

Tool for embossing

▶ 3.2 Horizontally structured surfaces

Replication techniques

- limited to thermoplastic polymers
- needs to cool while in contact with the tool→ slow process

Reactive casting

- UV curing through the substrate foil (needs to be transparent) or through a transparent tool (silicone)
- well-established process, fast

Embossing into a thixotropic resin (INM approach)

- shaping with high shear rate, but no relaxation afterwards
- curing after removing the tool
- fast alternative for non-transparent substrates

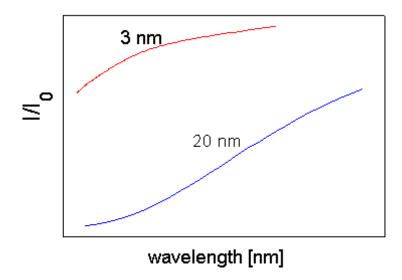
4. Nanocomposites Nanoparticles within a matrix

Goal: use nanoparticles to modify the properties of a polymer material ...

- Change the refractive index
- Modify the dispersion curve
- Increase hardness / wear resistance
- Add electrical functionalities
- ...

... without sacrificing transparency!

Challenge: Periodic structures may become invisible with feature sizes below $\lambda/4$ (half period), but inhomogeneities in random distributions of particles are much larger than the particles themselves \rightarrow Particles need to be really small!


4. Nanocomposites

Importance of particle size

Transparency of randomly distributed particles:

$$\frac{1}{I_0} = \exp \left[-4 \cdot \frac{\pi^4}{\lambda^4} \cdot d^3 \cdot \left(\frac{n_p^2 - n_m^2}{n_p^2 + 2 \cdot n_m^2}\right)^2 \cdot c \cdot L\right]$$

 I/I_0 = Transmission

 λ = Wavelength

d = Particle diameter

 n_p = Refractive index particles

n_m = Refractive index matrix

c = Particle concentration

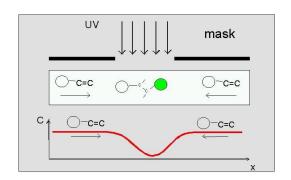
L = Thickness bulk

Notes: 1. Applies also to nanoporous materials

2. Good dispersion (avoiding agglomeration) is equally important

▶ 4. Nanocomposites

An example of a nanocomposite for microstructures



Target

- Development of Light Management Foils (LMF)
- Enhancement of brightness and contrast, reduced viewing angle dependence for LCD
- Better brightness and contrast, lower sensitivity to ambient light for projection screens

Methods

- Photosensitive gradient index material based on cross-linkable nanoparticles in a gel-like matrix
- Irradiation of this material through a mask produces a columnar microstructure with angle-dependent scattering properties
- Continuous roll-to-roll processes for coating, mask lamination and irradiation

Diffusion mechanism of polymerisable nanoparticles

Tilted columnar domains of higher refractive index in cured light management material

▶ 4. Nanocomposites

Light management foils

Results

- 50 μm thick films with pronounced angle-dependent scattering
 - ▶ High haze (>94 %) for light incident from preferred direction
 - Significantly lower haze for other directions
- ► LMF as diffuser in LCDs: approx. 20 % higher brightness and contrast
- LMF on mirror delivers even greater improvement

Applications

- Diffusers for LCD panels
- Projection screens
- Lighting

Projection screen LMF on mirror

THANK YOU FOR YOUR ATTENTION

Dr. Peter W. de Oliveira

INM – Leibniz Institute for New Materials

Campus D2 2

66123 Saarbrücken (Germany)

Phone: + 49681-9300-148

Fax: + 49681-9300-223

peter.oliveira@leibniz-inm.de

www.leibniz-inm.de