Schaltbare Mikrofluidik

Die Juniorforschungsgruppe Schaltbare Mikrofluidik wurde 2015 eingerichtet. Sie wird durch das Projekt „Bio/Synthetische Multifunktionale Mikro-Produktionseinheiten“ des Leibniz Research Clusters (LRC) gefördert. Ihr Ziel ist die Entwicklung schaltbarer strukturierter Oberflächen zur Anwendung in Gebieten wie Biosynthese, Biomedizin, Anwuchsverhinderung, Bildgebung und Adhäsion. Zu diesem Zweck entwickeln und synthetisieren wir neue intelligente Materialien, die ihre Eigenschaften wie Volumen, Form, Benetzbarkeit, optische und mechanische Eigenschaften, Adhäsion und Oberflächengeometrie in Abhängigkeit von äußeren Einflüssen ändern können. Diese Verbindungen werden über diverse Ansätze, wie z.B. Polymerisation, Selbstorganisation, molekulare Wiedererkennung oder Mischung zu responsiven Komponenten verarbeiet. Außerdem untersuchen wir die Anwendung von Nano- und Mikrotechnologien für die Herstellung neuer Materialien. Auf Basis dieser Verbindungen und Komponenten werden schaltbare Oberflächen hergestellt.


Leiter Schaltbare Mikrofluidik
Abteilung: Schaltbare Mikrofluidik
Telefon: +49 (0)681-9300-350
Abteilung: Geschäftsführung
Telefon: +49 (0)681-9300-502
    Switchable micro/meso-structural surface

    We are interested switchable surface with micro/meso-structure. Currently, we are developing a novel switchable meso-structural surfaces as micro-reactor platforms that permit simultaneous and unprecedented levels of control over reaction pathways. This project is inspired by the compartmentalized synthetic strategy in living cells: chemical reactions initiated under defined conditions, conclude at the required degree with desired product that can be automatically transferred to next reaction compartment, in a programmable and precisely controlled mode. To mimic this, we design a complex structure consisting of meso-structured surface with geometrically arranged hollow pillars and soft actuating system that can switch the channels. We develop various actuating soft materials such as responsive hydrogels, liquid-crystal elastomer, magnet composites etc; study the interfacial adhesion between different materials; investigate meso/micro-fabrication technologies.

    Figure 1

    Representative Publication

    • Cui, J., Miguel, V.S., del Campo, A. (2013) Light-triggered multifunctionality at surfaces mediated by photolabile protecting groups. Macromol Rapid Commun 34: 310-329.- doi: 10.1002/marc.201200634
    • Cui, J., Drotlef, D.-M, Larraza, I., Fernandez-Blazquez, J.P., Boesel, L.F., et al. (2012) Bioinspired actutated adhesive patterns of liquid crystalline elastomers. Adv Mater 24: 4601-4604.- doi: 10.1002/adma.201200895
    Mobile surface

    Liquid constitute a novel structure material to create multifunctional surface. We are interested in developing responsive liquids for fabricating responsive mobile surface with switchable wettability, penetrability, optical properties, self-healing ability, adhesion etc. We also focus on dynamic substrates for stabilizing liquids in a control mode such as control release, localization, mobility, migration, transport, storage of liquids. With these mobile surfaces, we demonstrate their potential application as anti-fouling, self-healing coatings or templates for fabricating high performance soft mater.

    Figure 2


    Hydrogel materials

    Hydrogels are materials that consist of crosslinked polymer networks dispersed in water. They can undergo significantly volume change under external stimuli and thus constitute promising actuating systems. However, the relatively poor mechanical behavior of hydrogels remains a challenge, impeding their use in real-world applications that require mechanical integrity. We design dynamic crosslinking mechanisms for reinforcing the mechanical performance of hydrogels; explore for their potential applications in the field of both engineering and medicine.

    Figure 3

    Representative Publications:

    • Jeon, I., Cui, J., Illeperuma, W.R.K., Vlassak, J.J., Aizenberg, J. (2016) Extremely Stretchable and Fast Self-Healing Hydrogels. Adv Mater.- doi: 10.1002/adma.201600480
    • Cui, J., del Campo, A. (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun 48: 9302-9304.- doi: 10.1039/C2CC34701F
    Swollen elastomers

    We study swollen elastomer materials or as-prepared organogel, including their fabrication, microstructure, surface properties, mechanical performance, reactions between polymer chains and reactants in liquid phase etc.

    Figure 4

    Representative Publication:

    • Cui J, Daniel D, Grinthal A, Lin K, Aizenberg J (2015) Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nat Mater 14: 790-795.- doi: 10.1038/nmat4325